Date
Thu, 04 Nov 2010
Time
14:00 - 15:00
Location
Gibson Grd floor SR
Speaker
Prof. Eric de Sturler
Organisation
Virginia Tech

The Bi-Conjugate Gradient method (BiCG) is a well-known iterative solver (Krylov method) for linear systems of equations, proposed about 35 years ago, and the basis for some of the most successful iterative methods today, like BiCGSTAB. Nevertheless, the convergence behavior is poorly understood. The method satisfies a Petrov-Galerkin property, and hence its residual is constrained to a space of decreasing dimension (decreasing one per iteration). However, that does not explain why, for many problems, the method converges in, say, a hundred or a few hundred iterations for problems involving a hundred thousand or a million unknowns. For many problems, BiCG converges not much slower than an optimal method, like GMRES, even though the method does not satisfy any optimality properties. In fact, Anne Greenbaum showed that every three-term recurrence, for the first (n/2)+1 iterations (for a system of dimension n), is BiCG for some initial 'left' starting vector. So, why does the method work so well in most cases? We will introduce Krylov methods, discuss the convergence of optimal methods, describe the BiCG method, and provide an analysis of its convergence behavior.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.