Date
Thu, 27 May 2004
Time
14:00 - 15:00
Location
Comlab
Speaker
Dr Miguel Anjos
Organisation
University of Southampton

The satisfiability (SAT) problem is a central problem in mathematical

logic, computing theory, and artificial intelligence. We consider

instances of SAT specified by a set of boolean variables and a

propositional formula in conjunctive normal form. Given such an instance,

the SAT problem asks whether there is a truth assignment to the variables

such that the formula is satisfied. It is well known that SAT is in

general NP-complete, although several important special cases can be

solved in polynomial time. Extending the work of de Klerk, Warners and van

Maaren, we present new linearly sized semidefinite programming (SDP)

relaxations arising from a recently introduced paradigm of higher

semidefinite liftings for discrete optimization problems. These

relaxations yield truth assignments satisfying the SAT instance if a

feasible matrix of sufficiently low rank is computed. The sufficient rank

values differ between relaxations and can be viewed as a measure of the

relative strength of each relaxation. The SDP relaxations also have the

ability to prove that a given SAT formula is unsatisfiable. Computational

results on hard instances from the SAT Competition 2003 show that the SDP

approach has the potential to complement existing techniques for SAT.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.