Non-uniqueness in a minimal model for cell motility

1 November 2011
Cell motility is a crucial part of many biological processes including wound healing, immunity and embryonic development. The interplay between mechanical forces and biochemical control mechanisms make understanding cell motility a rich and exciting challenge for mathematical modelling. We consider the two-phase, poroviscous, reactive flow framework used in the literature to describe crawling cells and present a stripped down version. Linear stability analysis and numerical simulations provide insight into the onset of polarization of a stationary cell and reveal qualitatively distinct families of travelling wave solutions. The numerical solutions also capture the experimentally observed behaviour that cells crawl fastest when the surface they crawl over is neither too sticky nor too slippy.
  • Junior Applied Mathematics Seminar