Date
Mon, 28 Nov 2011
Time
17:00 - 18:00
Location
Gibson 1st Floor SR
Speaker
Kirill Cherednichenko
Organisation
Cardiff University

I will describe a multiscale asymptotic framework for the analysis of the macroscopic behaviour of periodic

two-material composites with high contrast in a finite-strain setting. I will start by introducing the nonlinear

description of a composite consisting of a stiff material matrix and soft, periodically distributed inclusions. I shall then focus

on the loading regimes when the applied load is small or of order one in terms of the period of the composite structure.

I will show that this corresponds to the situation when the displacements on the stiff component are situated in the vicinity

of a rigid-body motion. This allows to replace, in the homogenisation limit, the nonlinear material law of the stiff component

by its linearised version. As a main result, I derive (rigorously in the spirit of $\Gamma$-convergence) a limit functional

that allows to establish a precise two-scale expansion for minimising sequences. This is joint work with M. Cherdantsev and

S. Neukamm.

Last updated on 4 Apr 2022, 2:57pm. Please contact us with feedback and comments about this page.