String topology of classifying spaces

16 January 2012
Richard Hepworth

Chataur and Menichi showed that the homology of the free loop space of the classifying space of a compact Lie group admits a rich algebraic structure: It is part of a homological field theory, and so admits operations parametrised by the homology of mapping class groups.  I will present a new construction of this field theory that improves on the original in several ways: It enlarges the family of admissible Lie groups.  It extends the field theory to an open-closed one.  And most importantly, it allows for the construction of co-units in the theory.  This is joint work with Anssi Lahtinen.