Date
Thu, 02 Feb 2012
Time
14:00 - 15:00
Location
Gibson Grd floor SR
Speaker
Dr Coralia Cartis
Organisation
University of Edinburgh

We show that the steepest-descent and Newton's methods for unconstrained nonconvex optimization

under standard assumptions may both require a number of iterations and function evaluations

arbitrarily close to the steepest-descent's global worst-case complexity bound. This implies that

the latter upper bound is essentially tight for steepest descent and that Newton's method may be as

slow as the steepest-descent method in the worst case. Then the cubic regularization of Newton's

method (Griewank (1981), Nesterov & Polyak (2006)) is considered and extended to large-scale

problems, while preserving the same order of its improved worst-case complexity (by comparison to

that of steepest-descent); this improved worst-case bound is also shown to be tight. We further

show that the cubic regularization approach is, in fact, optimal from a worst-case complexity point

of view amongst a wide class of second-order methods. The worst-case problem-evaluation complexity

of constrained optimization will also be discussed. This is joint work with Nick Gould (Rutherford

Appleton Laboratory, UK) and Philippe Toint (University of Namur, Belgium).

Last updated on 6 May 2025, 2:04pm. Please contact us with feedback and comments about this page.