Date
Thu, 17 May 2012
Time
14:00 - 15:00
Location
Gibson Grd floor SR
Speaker
Dr Mike Botchev
Organisation
University of Twente

Exponential time integrators are a powerful tool for numerical solution

of time dependent problems. The actions of the matrix functions on vectors,

necessary for exponential integrators, can be efficiently computed by

different elegant numerical techniques, such as Krylov subspaces.

Unfortunately, in some situations the additional work required by

exponential integrators per time step is not paid off because the time step

can not be increased too much due to the accuracy restrictions.

To get around this problem, we propose the so-called time-stepping-free

approach. This approach works for linear ordinary differential equation (ODE)

systems where the time dependent part forms a small-dimensional subspace.

In this case the time dependence can be projected out by block Krylov

methods onto the small, projected ODE system. Thus, there is just one

block Krylov subspace involved and there are no time steps. We refer to

this method as EBK, exponential block Krylov method. The accuracy of EBK

is determined by the Krylov subspace error and the solution accuracy in the

projected ODE system. EBK works for well for linear systems, its extension

to nonlinear problems is an open problem and we discuss possible ways for

such an extension.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.