Date
Thu, 18 Oct 2012
Time
16:00 - 17:00
Location
DH 1st floor SR
Speaker
Richard Craster
Organisation
Imperial College London

Some striking, and potentially useful, effects in electrokinetics occur for

bipolar membranes: applications are in medical diagnostics amongst other areas.

The purpose of this talk is to describe the experiments, the dominant features observed

and then model the phenomena: This uncovers the physics that control this process.

Time-periodic reverse voltage bias

across a bipolar membrane is shown to exhibit transient hysteresis.

This is due to the incomplete depletion of mobile ions, at the junction

between the membranes, within two adjoining polarized layers; the layer thickness depends on

the applied voltage and the surface charge densities. Experiments

show that the hysteresis consists of an Ohmic linear rise in the

total current with respect to the voltage, followed by a

decay of the current. A limiting current is established for a long

period when all the mobile ions are depleted from the polarized layer.

If the resulting high field within the two polarized layers is

sufficiently large, water dissociation occurs to produce proton and

hydroxyl travelling wave fronts which contribute to another large jump

in the current. We use numerical simulation and asymptotic analysis

to interpret the experimental results and

to estimate the amplitude of the transient hysteresis and the

water-dissociation current.

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 14:57.