Numerical Methods for PDEs with Random Coefficients

Dr Elisabeth Ullmann
Abstract

Partial differential equations (PDEs) with random coefficients are used in computer simulations of physical processes in science, engineering and industry applications with uncertain data. The goal is to obtain quantitative statements on the effect of input data uncertainties for a comprehensive evaluation of simulation results. However, these equations are formulated in a physical domain coupled with a sample space generated by random parameters and are thus very computing-intensive.

We outline the key computational challenges by discussing a model elliptic PDE of single phase subsurface flow in random media. In this application the coefficients are often rough, highly variable and require a large number of random parameters which puts a limit on all existing discretisation methods. To overcome these limits we employ multilevel Monte Carlo (MLMC), a novel variance reduction technique which uses samples computed on a hierarchy of physical grids. In particular, we combine MLMC with mixed finite element discretisations to calculate travel times of particles in groundwater flows.

For coefficients which can be parameterised by a small number of random variables we employ spectral stochastic Galerkin (SG) methods which give rise to a coupled system of deterministic PDEs. Since the standard SG formulation of the model elliptic PDE requires expensive matrix-vector products we reformulate it as a convection-diffusion problem with random convective velocity. We construct and analyse block-diagonal preconditioners for the nonsymmetric Galerkin matrix for use with Krylov subspace methods such as GMRES.

  • Computational Mathematics and Applications Seminar