Date
Thu, 11 Oct 2012
Time
14:00 - 15:00
Location
Gibson Grd floor SR
Speaker
Dr Patrick Farrell
Organisation
Imperial College London

The derivatives of PDE models are key ingredients in many

important algorithms of computational science. They find applications in

diverse areas such as sensitivity analysis, PDE-constrained

optimisation, continuation and bifurcation analysis, error estimation,

and generalised stability theory.

\\

\\

These derivatives, computed using the so-called tangent linear and

adjoint models, have made an enormous impact in certain scientific fields

(such as aeronautics, meteorology, and oceanography). However, their use

in other areas has been hampered by the great practical

difficulty of the derivation and implementation of tangent linear and

adjoint models. In his recent book, Naumann (2011) describes the problem

of the robust automated derivation of parallel tangent linear and

adjoint models as "one of the great open problems in the field of

high-performance scientific computing''.

\\

\\

In this talk, we present an elegant solution to this problem for the

common case where the original discrete forward model may be written in

variational form, and discuss some of its applications.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.