Mon, 08 Feb 2021

16:00 - 17:00
Virtual

Symmetry and uniqueness via a variational approach

Yao Yao
(Giorgia Tech)
Abstract

For some nonlocal PDEs, its steady states can be seen as critical points of an associated energy functional. Therefore, if one can construct perturbations around a function such that the energy decreases to first order along the perturbation, this function cannot be a steady state. In this talk, I will discuss how this simple variational approach has led to some recent progresses in the following equations, where the key is to carefully construct a suitable perturbation.

I will start with the aggregation-diffusion equation, which is a nonlocal PDE driven by two competing effects: nonlinear diffusion and long-range attraction. We show that all steady states are radially symmetric up to a translation (joint with Carrillo, Hittmeir and Volzone), and give some criteria on the uniqueness/non-uniqueness of steady states within the radial class (joint with Delgadino and Yan).

I will also discuss the 2D Euler equation, where we aim to understand under what condition must a stationary/uniformly-rotating solution be radially symmetric. Using a variational approach, we settle some open questions on the radial symmetry of rotating patches, and also show that any smooth stationary solution with compactly supported and nonnegative vorticity must be radial (joint with Gómez-Serrano, Park and Shi).

Author Correction: Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo’
Lavezzo, E Franchin, E Ciavarella, C Cuomo-Dannenburg, G Barzon, L Del Vecchio, C Rossi, L Manganelli, R Loregian, A Navarin, N Abate, D Sciro, M Merigliano, S De Canale, E Vanuzzo, M Besutti, V Saluzzo, F Onelia, F Pacenti, M Parisi, S Carretta, G Donato, D Flor, L Cocchio, S Masi, G Sperduti, A Cattarino, L Salvador, R Nicoletti, M Caldart, F Castelli, G Nieddu, E Labella, B Fava, L Drigo, M Gaythorpe, K Brazzale, A Toppo, S Trevisan, M Baldo, V Donnelly, C Ferguson, N Dorigatti, I Crisanti, A Nature volume 590 issue 7844 e11-e11 (04 Feb 2021)
Stein's density method for multivariate continuous distributions
Mijoule, G Reinert, G Swan, Y
Tue, 26 Jan 2021
16:00
Virtual

Symbol Alphabets from Plabic Graphs

Anders Schreiber
(Mathematical Institute (University of Oxford))
Abstract

Symbol alphabets of n-particle amplitudes in N=4 super-Yang-Mills theory are known to contain certain cluster variables of Gr(4,n) as well as certain algebraic functions of cluster variables. In this talk we suggest an algorithm for computing these symbol alphabets from plabic graphs by solving matrix equations of the form C.Z = 0 to associate functions on Gr(m,n) to parameterizations of certain cells of Gr_+ (k,n) indexed by plabic graphs. For m=4 and n=8 we show that this association precisely reproduces the 18 algebraic symbol letters of the two-loop NMHV eight-point amplitude from four plabic graphs. We further show that it is possible to obtain all rational symbol letters (in fact all cluster variables) by solving C.Z = 0 if one allows C to be an arbitrary cluster parameterization of the top cell of Gr_+ (n-4,n).

Tue, 16 Feb 2021

17:00 - 18:30

Spacetime Singularities - Roger Penrose, Dennis Lehmkuhl & Melvyn Bragg

(University of Oxford and University of Bonn)
Further Information

Oxford Mathematics Online Public Lecture in Partnership with Wadham College celebrating Roger Penrose's Nobel Prize

Spacetime Singularities - Roger Penrose, Dennis Lehmkuhl and Melvyn Bragg
Tuesday 16 February 2021
5.00-6.30pm

Dennis Lehmkuhl: From Schwarzschild’s singularity and Hadamard’s catastrophe to Penrose’s trapped surfaces
Roger Penrose: Spacetime singularities - to be or not to be?
Roger Penrose & Melvyn Bragg: In conversation

What are spacetime singularities? Do they exist in nature or are they artefacts of our theoretical reasoning? Most importantly, if we accept the general theory of relativity, our best theory of space, time, and gravity, do we then also have to accept the existence of spacetime singularities?

In this special lecture, Sir Roger Penrose, 2020 Nobel Laureate for Physics, will give an extended version of his Nobel Prize Lecture, describing his path to the first general singularity theorem of general relativity, and to the ideas that sprung from this theorem, notably the basis for the existence of Black Holes. He will be introduced by Dennis Lehmkuhl whose talk will describe how the concept of a spacetime singularity developed prior to Roger's work, in work by Einstein and others, and how much of a game changer the first singularity theorem really was.

The lectures will be followed by an interview with Roger by Melvyn Bragg.

Roger Penrose is the 2020 Nobel Laureate for Physics and Emeritus Rouse Ball Professor in Oxford; Dennis Lehmkuhl is Lichtenberg Professor of History and Philosophy of Physics at the University of Bonn and one of the Editors of Albert Einstein's Collected Papers: Melvyn Bragg is a broadcaster and author best known for his work as editor and presenter of the South Bank Show and In Our Time.

Watch online (no need to register - and the lecture will stay up on all channels afterwards):
Oxford Mathematics Twitter
Oxford Mathematics Facebook
Oxford Mathematics Livestream
Oxford Mathematics YouTube

The Oxford Mathematics Public Lecture are generously supported by XTX Markets

[[{"fid":"60543","view_mode":"media_397x223","fields":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-397x223","data-delta":"1"}}]]

Framing energetic top-quark pair production at the LHC
Caola, F Dreyer, F McDonald, R Salam, G Journal of High Energy Physics volume 2021 issue 7 (08 Jul 2021)
Fri, 29 Jan 2021

14:00 - 15:00
Virtual

Representations of affine Hecke algebras and graded Hecke algebras

Ruben La
(University of Oxford)
Abstract

There is a connection between certain smooth representations of a reductive p-adic group and the representations of the Iwahori-Hecke algebra of this p-adic group. This Iwahori-Hecke algebra is a specialisation of a more general affine Hecke algebra. In this talk, we will discuss affine Hecke algebras and graded Hecke algebras. We will state a result from Lusztig (1989) that relates the representation theory of an affine Hecke algebra and a particular graded Hecke algebra and we will present a simple example of this relation.

Mon, 01 Mar 2021

16:00 - 17:00

Nonlinear Fokker=Planck equations with measure as initial data and McKean-Vlasov equations

MICHAEL ROECKNER
(Bielefeld University)
Abstract

Nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations This talk is about joint work with Viorel Barbu. We consider a class of nonlinear Fokker-Planck (- Kolmogorov) equations of type \begin{equation*} \frac{\partial}{\partial t} u(t,x) - \Delta_x\beta(u(t,x)) + \mathrm{div} \big(D(x)b(u(t,x))u(t,x)\big) = 0,\quad u(0,\cdot)=\mu, \end{equation*} where $(t,x) \in [0,\infty) \times \mathbb{R}^d$, $d \geq 3$ and $\mu$ is a signed Borel measure on $\mathbb{R}^d$ of bounded variation. In the first part of the talk we shall explain how to construct a solution to the above PDE based on classical nonlinear operator semigroup theory on $L^1(\mathbb{R}^d)$ and new results on $L^1- L^\infty$ regularization of the solution semigroups in our case. In the second part of the talk we shall present a general result about the correspondence of nonlinear Fokker-Planck equations (FPEs) and McKean-Vlasov type SDEs. In particular, it is shown that if one can solve the nonlinear FPE, then one can always construct a weak solution to the corresponding McKean-Vlasov SDE. We would like to emphasize that this, in particular, applies to the singular case, where the coefficients depend "Nemytski-type" on the time-marginal law of the solution process, hence the coefficients are not continuous in the measure-variable with respect to the weak topology on probability measures. This is in contrast to the literature in which the latter is standardly assumed. Hence we can cover nonlinear FPEs as the ones above, which are PDEs for the marginal law densities, realizing an old vision of McKean.

References V. Barbu, M. Röckner: From nonlinear Fokker-Planck equations to solutions of distribution dependent SDE, Ann. Prob. 48 (2020), no. 4, 1902-1920. V. Barbu, M. Röckner: Solutions for nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations, J. Funct. Anal. 280 (2021), no. 7, 108926.

Mixed QCD-electroweak corrections to W-boson production in hadron collisions
Behring, A Buccioni, F Caola, F Delto, M Jaquier, M Melnikov, K Röntsch, R volume 103 issue 1 (27 Jan 2021)
Diphoton amplitudes in three-loop quantum chromodynamics
Caola, F Von Manteuffel, A Tancredi, L volume 126 issue 11 (18 Mar 2021)
Subscribe to