Tue, 27 Apr 2021
14:00
Virtual

Maximum stationary values in directed random graphs

Guillem Perarnau
(Universitat Politecnica de Catalunya)
Abstract

In this talk we will consider the extremal values of the stationary distribution of the sparse directed configuration model. Under the assumption of linear $(2+\eta)$-moments on the in-degrees and of bounded out-degrees, we obtain tight comparisons between the maximum value of the stationary distribution and the maximum in-degree. Under the further assumption that the order statistics of the in-degrees have power-law behavior, we show that the upper tail of the stationary distribution also has power-law behavior with the same index. Moreover, these results extend to the PageRank scores of the model, thus confirming a version of the so-called power-law hypothesis. Joint work with Xing Shi Cai, Pietro Caputo and Matteo Quattropani.

Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Assessing Parkinson’s Disease Speech Signal Generalization of Clustering Results across Three Countries: Findings in the Parkinson’s Voice Initiative Study
Tsanas, A Arora, S 124-131 (01 Jan 2021)
Thu, 17 Jun 2021

12:00 - 13:00
Virtual

Willmore Surfaces: Min-Max and Morse Index

Alexis Michelat
(University of Oxford)
Abstract

The integral of mean curvature squared is a conformal invariant that measures the distance from a given immersion to the standard embedding of a round sphere. Following work of Robert Bryant who showed that all Willmore spheres in the 3-sphere are conformally minimal, Robert Kusner proposed in the early 1980s to use the Willmore energy to obtain an “optimal” sphere eversion, called the min-max sphere eversion.

We will present a method due to Tristan Rivière that permits to tackle a wide variety of min-max problems, including ones about the Willmore energy. An important step to solve Kusner’s conjecture is to determine the Morse index of branched Willmore spheres, and we show that the Morse index of conformally minimal branched Willmore spheres is equal to the index of a canonically associated matrix whose dimension is equal to the number of ends of the dual minimal surface.

Further Information

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Thu, 10 Jun 2021

17:00 - 18:00
Virtual

Simple motion of stretch-limited elastic strings

Casey Rodriguez
(MIT)
Abstract

Elastic strings are among the simplest one-dimensional continuum bodies and have a rich mechanical and mathematical theory dating back to the derivation of their equations of motion by Euler and Lagrange. In classical treatments, the string is either completely extensible (tensile force produces elongation) or completely inextensible (every segment has a fixed length, regardless of the motion). However, common experience is that a string can be stretched (is extensible), and after a certain amount of tensile force is applied the stretch of the string is maximized (becomes inextensible). In this talk, we discuss a model for these stretch-limited elastic strings, in what way they model elastic behavior, the well-posedness and asymptotic stability of certain simple motions, and (many) open questions.

Further Information

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Thu, 13 May 2021

12:00 - 13:00
Virtual

Deep Neural Networks for High-Dimensional PDEs in Stochastic Control and Games

Yufei Zhang
(Oxford University)
Abstract

In this talk, we discuss the feasibility of algorithms based on deep artificial neural networks (DNN) for the solution of high-dimensional PDEs, such as those arising from stochastic control and games. In the first part, we show that in certain cases, DNNs can break the curse of dimensionality in representing high-dimensional value functions of stochastic control problems. We then exploit policy iteration to reduce the associated nonlinear PDEs into a sequence of linear PDEs, which are then further approximated via a multilayer feedforward neural network ansatz. We establish that in suitable settings the numerical solutions and their derivatives converge globally, and further demonstrate that this convergence is superlinear, by interpreting the algorithm as an inexact Newton iteration. Numerical experiments on Zermelo's navigation problem and on consensus control of interacting particle systems are presented to demonstrate the effectiveness of the method. This is joint work with Kazufumi Ito, Christoph Reisinger and Wolfgang Stockinger.

Further Information

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Mon, 26 Apr 2021
12:45
Virtual

Calculation of zeta functions for one parameter families of Calabi-Yau manifolds

Philip Candelas
(Oxford)
Abstract

The periods of a Calabi-Yau manifold are of interest both to number theorists and to physicists. To a number theorist the primary object of interest is the zeta function. I will explain what this is, and why this is of interest also to physicists. For applications it is important to be able to calculate the local zeta function for many primes p. I will set out a method, adapted from a procedure proposed by Alan Lauder that makes the computation of the zeta function practical, in this sense, and comment on the form of the results. This talk is based largely on the recent paper hepth 2104.07816 and presents joint work with Xenia de la Ossa and Duco van Straten.

Fri, 30 Apr 2021
16:15
Virtual

Organisational meeting

Further Information

In the organisational meeting we will discuss the schedule, format and contents of this term's JC, so do come along and give your input as to which interesting papers or topics we should take up. We will meet in the group gathertown.

Tue, 18 May 2021
14:15
Virtual

Categorification of the elliptic Hall algebra

Alistair Savage
(Ottawa)
Abstract

The elliptic Hall algebra has appeared in many different contexts in representation theory and geometry under different names.  We will explain how this algebra is categorified by the quantum Heisenberg category.  This diagrammatic category is modelled on affine Hecke algebras and can be viewed as a deformation of the framed HOMFLYPT skein category underpinning the HOMFLYPT link invariant.  Using the categorification of the elliptic Hall algebra, one can construct large families of representations for this algebra.

Tue, 08 Jun 2021
14:15
Virtual

Kaplansky's conjectures

Giles Gardam
(University Muenster)
Abstract

Three conjectures on group rings of torsion-free groups are commonly attributed to Kaplansky, namely the unit, zero divisor and idempotent conjectures. For example, the zero divisor conjecture predicts that if $K$ is a field and $G$ is a torsion-free group, then the group ring $K[G]$ has no zero divisors. I will survey what is known about the conjectures, including their relationships to each other and to other conjectures and group properties, and present my recent counterexample to the unit conjecture.

Subscribe to