Tue, 27 Oct 2020

15:30 - 16:30
Virtual

Delocalization transition for critical Erdös-Rényi graphs

Antti Knowles
(Université de Genève)
Further Information

Further Information: 

This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

We analyse the eigenvectors of the adjacency matrix of a critical Erdös-Rényi graph G(N,d/N), where d is of order \log N. We show that its spectrum splits into two phases: a delocalized phase in the middle of the spectrum, where the eigenvectors are completely delocalized, and a semilocalized phase near the edges of the spectrum, where the eigenvectors are essentially localized on a small number of vertices. In the semilocalized phase the mass of an eigenvector is concentrated in a small number of disjoint balls centred around resonant vertices, in each of which it is a radial exponentially decaying function. The transition between the phases is sharp and is manifested in a discontinuity in the localization exponents of the eigenvectors. Joint work with Johannes Alt and Raphael Ducatez.

Thu, 26 Nov 2020

16:00 - 17:00
Virtual

Convective instabilities in ternary alloy solidification

Daniel M. Anderson
(George Mason University)
Further Information

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Abstract

Daniel M. Anderson

Department of Mathematical Sciences, George Mason University

Applied and Computational Mathematics Division, NIST

Binary and multicomponent alloy solidification occurs in many industrial materials science applications as well as in geophysical systems such as sea ice. These processes involve heat and mass transfer coupled with phase transformation dynamics and can involve the formation of mixed phase regions known as mushy layers.  The understanding of transport mechanisms within mushy layers has important consequences for how these regions interact with the surrounding liquid and solid regions.  Through linear stability analyses and numerical calculations of mathematical models, convective instabilities that occur in solidifying ternary alloys will be explored.  Novel fluid dynamical phenomena that are predicted for these systems will be discussed.

Thu, 29 Oct 2020

16:00 - 17:00
Virtual

A Theory for Undercompressive Shocks in Tears of Wine

Andrea Bertozzi
(University of California Los Angeles)
Further Information

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

 

Abstract

We revisit the tears of wine problem for thin films in
water-ethanol mixtures and present a new model for the climbing
dynamics. The new formulation includes a Marangoni stress balanced by
both the normal and tangential components of gravity as well as surface
tension which lead to distinctly different behavior. The combined
physics can be modeled mathematically by a scalar conservation law with
a nonconvex flux and a fourth order regularization due to the bulk
surface tension. Without the fourth order term, shock solutions must
satisfy an entropy condition - in which characteristics impinge on the
shock from both sides. However, in the case of a nonconvex flux, the
fourth order term is a singular perturbation that allows for the
possibility of undercompressive shocks in which characteristics travel
through the shock. We present computational and experimental evidence
that such shocks can happen in the tears of wine problem, with a
protocol for how to observe this in a real life setting.

Thu, 22 Oct 2020

16:00 - 17:00
Virtual

Thin Film Flows on a Substrate of Finite Width: A Novel Similarity Solution

Howard Stone
(Princeton)
Further Information

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

 

Abstract

There are many examples of thin-film flows in fluid dynamics, and in many cases similarity solutions are possible. In the typical, well-known case the thin-film shape is described by a nonlinear partial differential equation in two independent variables (say x and t), which upon recognition of a similarity variable, reduces the problem to a nonlinear ODE. In this talk I describe work we have done on 1) Marangoni-driven spreading on pre-wetted films, where the thickness of the pre-wetted film affects the dynamics, and 2) the drainage of a film on a vertical substrate of finite width. In the latter case we find experimentally a structure to the film shape near the edge, which is a function of time and two space variables. Analysis of the corresponding thin-film equation shows that there is a similarity solution, collapsing three independent variables to one similarity variable, so that the PDE becomes an ODE. The solution is in excellent agreement with the experimental measurements.

Tue, 19 Jan 2021
12:00
Virtual

Quantum State Reduction: its Interrelation with Relativity

Roger Penrose
(Oxford University)
Abstract

I take the “collapse of the wave-function” to be an objective physical process—OR (the Objective Reduction of the quantum state)—which I argue to be intimately related to a basic conflict between the principles of equivalence and quantum linear superposition, which leads us to a fairly specific formula (in agreement with one found earlier by Diósi) for the timescale for OR to take place. Moreover, we find that for consistency with relativity, OR needs to be “instantaneous” but with curious retro-active features. By extending an argument due to Donadi, for EPR situations, we find a fundamental conflict with “gradualist” models such as CSL, in which OR is taken to be the result of a (stochastic) evolution of quantum amplitudes.

Thu, 01 Oct 2020

16:00 - 17:00
Virtual

Tropical time series, iterated-sums signatures and quasisymmetric functions

Joscha Diehl
(University of Greifswald)
Abstract

Driven by the need for principled extraction of features from time series, we introduce the iterated-sums signature over any commutative semiring. The case of the tropical semiring is a central, and our motivating, example, as it leads to features of (real-valued) time series that are not easily available using existing signature-type objects.

This is joint work with Kurusch Ebrahimi-Fard (NTNU Trondheim) and Nikolas Tapia (WIAS Berlin).

Thu, 24 Sep 2020

16:45 - 17:30
Virtual

An introduction to compact quantum metric spaces

David Kyed
(University of Southern Denmark)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

The Gelfand correspondence between compact Hausdorff spaces and unital C*-algebras justifies the slogan that C*-algebras are to be thought of as "non-commutative topological spaces", and Rieffel's theory of compact quantum metric spaces provides, in the same vein, a non-commutative counterpart to the theory of compact metric spaces. The aim of my talk is to introduce the basics of the theory and explain how the classical Gromov-Hausdorff distance between compact metric spaces can be generalized to the quantum setting. If time permits, I will touch upon some recent results obtained in joint work with Jens Kaad and Thomas Gotfredsen.

Thu, 10 Sep 2020

16:45 - 17:30
Virtual

A peek into the classification of C*-dynamics

Gabor Szabo
(KU Leuven)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

In the structure theory of operator algebras, it has been a reliable theme that a classification of interesting classes of objects is usually followed by a classification of group actions on said objects. A good example for this is the complete classification of amenable group actions on injective factors, which complemented the famous work of Connes-Haagerup. On the C*-algebra side, progress in the Elliott classification program has likewise given impulse to the classification of C*-dynamics. Although C*-dynamical systems are not yet understood at a comparable level, there are some sophisticated tools in the literature that yield satisfactory partial results. In this introductory talk I will outline the (known) classification of finite group actions with the Rokhlin property, and in the process highlight some themes that are still relevant in today's state-of-the-art.

Subscribe to