Wed, 29 Jan 2025
11:00
L4

Singularity of solutions to singular SPDEs.

Hirotatsu Nagoji
(Kyoto University)
Abstract

In this talk, we discuss the condition for the marginal distribution of the solution to singular SPDEs on the d-dimensional torus to be singular with respect to the law of the Gaussian measure induced by the linearized equation. As applications of our result, we see the singularity of the Phi^4_3-measure with respect to the Gaussian free field measure and the border of parameters for the fractional Phi^4-measure to be singular with respect to the base Gaussian measure. This talk is based on a joint work with Martin Hairer and Seiichiro Kusuoka.

Wed, 22 Jan 2025
11:00
L6

Adapted Wasserstein distance between continuous Gaussian processes

Yifan Jiang
(Mathematical Institute)
Abstract
Adapted Wasserstein distance is a generalization of the classical Wasserstein distance for stochastic processes. It captures not only the spatial information but also the temporal information induced by the processes. In this talk, I will focus on the adapted Wasserstein distance between continuous Gaussian processes. An explicit formula in terms of their canonical representations will be given. These results cover rough processes such as fractional Brownian motions and fractional Ornstein--Uhlenbeck processes. If time permits, I will also show that the optimal coupling between two 1D additive fractional SDE is driven by the synchronous coupling of the noise.
We introduce a 'causal factorization' as an infinite dimensional Cholesky decomposition on Hilbert spaces. This naturally bridges the probabilistic notion 'causal transport' and the algebraic object 'nest algebra'.  Such a factorization is closely related to the (non)canonical representation of Gaussian processes which is of independent interest. This talk is based on a work-in-progress with Fang Rui Lim.

The Biochemistry department are recruiting some new Class Tutors for Hilary term to teach 4 statistics classes as part of the undergraduate Quantitative Biochemistry Course.

Garbage in Garbage out: Impacts of data quality on criminal network intervention
Yeung, W Di Clemente, R Lambiotte, R (02 Jan 2025)
Concise network models of memory dynamics reveal explainable patterns in path data
Sahasrabuddhe, R Lambiotte, R Rosvall, M (14 Jan 2025)
Thu, 01 May 2025

14:00 - 15:00
Lecture Room 3

Adventures in structured matrix computations

Gunnar Martinsson
(UT Austin)
Abstract

Many matrices that arise in scientific computing and in data science have internal structure that can be exploited to accelerate computations. The focus in this talk will be on matrices that are either of low rank, or can be tessellated into a collection of subblocks that are either of low rank or are of small size. We will describe how matrices of this nature arise in the context of fast algorithms for solving PDEs and integral equations, and also in handling "kernel matrices" from computational statistics. A particular focus will be on randomized algorithms for obtaining data sparse representations of such matrices.

 

At the end of the talk, we will explore an unorthodox technique for discretizing elliptic PDEs that was designed specifically to play well with fast algorithms for dense structured matrices.

Tue, 25 Feb 2025

15:30 - 16:30
Online

Recent developments on off-diagonal hypergraph Ramsey numbers

Dhruv Mubayi
(University of Illinois at Chicago)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will discuss various results and conjectures about off-diagonal hypergraph Ramsey numbers, focusing on recent developments.

Tue, 25 Feb 2025

14:00 - 15:00
Online

Integer distance sets

Rachel Greenfeld
(Northwestern University)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

A set in the Euclidean plane is called an integer distance set if the distance between any pair of its points is an integer.  All so-far-known integer distance sets have all but up to four of their points on a single line or circle; and it had long been suspected, going back to Erdős, that any integer distance set must be of this special form. In a recent work, joint with Marina Iliopoulou and Sarah Peluse, we developed a new approach to the problem, which enabled us to make the first progress towards confirming this suspicion.  In the talk, I will discuss the study of integer distance sets, its connections with other problems, and our new developments.

Tue, 21 Jan 2025

16:00 - 17:00
L3

Quo Vadis

Nati Linial
(Hebrew University of Jerusalem)
Abstract

Paraphrasing the title of Riemann’s famous lecture of 1854 I ask: What is the most rudimentary notion of a geometry? A possible answer is a path system: Consider a finite set of “points” $x_1,…,x_n$ and provide a recipe how to walk between $x_i$ and $x_j$ for all $i\neq j$, namely decide on a path $P_{ij}$, i.e., a sequence of points that starts at $x_i$ and ends at $x_j$, where $P_{ji}$ is $P_{ij}$, in reverse order. The main property that we consider is consistency. A path system is called consistent if it is closed under taking subpaths. What do such systems look like? How to generate all of them? We still do not know. One way to generate a consistent path system is to associate a positive number $w_{ij}>0$ with every pair and let $P_{ij}$ be the corresponding $w$-shortest path between $x_i$ and $x_j$. Such a path system is called metrical. It turns out that the class of consistent path systems is way richer than the metrical ones.

My main emphasis in this lecture is on what we don’t know and wish to know, yet there is already a considerable body of work that we have done on the subject.

The new results that I will present are joint with my student Daniel Cizma as well as with him and with Maria Chudnovsky.

Subscribe to