A deterministic optimal design problem for the heat equation
Abstract
In everyday language, this talk studies the question about the optimal shape and location of a thermometer of a given volume to reconstruct the temperature distribution in an entire room. For random initial conditions, this problem was considered by Privat, Trelat and Zuazua (ARMA, 2015), and for short times we remove both the randomness and geometric assumptions in their article. Analytically, we obtain quantitative estimates for the well-posedness of an inverse problem, in which one determines the solution in the whole domain from its restriction to a subset of given volume. Using a new decomposition of $L^2(\Rd)$ into heat packets from microlocal analysis, we conclude that there exists a unique optimal such subset, that it is semi-analytic and can be approximated numerically by solving a sequence of finite-dimensional optimization problems. (joint with Alden Waters)