The decay of solutions of Maxwell-Klein-Gordon equations
Abstract
It has been shown that there are global solutions to
Maxwell-Klein-Gordon equations in Minkowski space with finite energy
data. However, very little is known about the asymptotic behavior of the
solution. In this talk, I will present recent progress on the decay
properties of the solutions. We show the quantitative energy flux decay
of the solutions with data merely bounded in some weighted energy space.
The results in particular hold in the presence of large total charge.
This is the first result that gives a complete and precise description
of the global behavior of large nonlinear fields.
A "Simple" Answer to a "Not Quite Simple" Problem - The Prequel to A "Simple" Question
Abstract
In this seminar, I aim to go through the "main prequel" of the talk I gave during the first Advanced Class of this term, and provide a "simple" answer to Abraham Robinson's original question that he posed in 1973 regarding the (un)decidability of finitely generated extensions of undecidable fields. I will provide a quick introduction to, and some classical results from, the mathematical discipline of Field Arithmetic, and using these results show that one can construct undecidable (large) fields that have finitely generated extensions which are decidable. Of course, as I had mentioned in the advanced class, a counterexample to the "simple" question that I have been working on unfortunately does not seem to lie within this class of large fields. If time permits, I will provide a sneak peek into the possible "sequel" by briefly talking about what the main issue of solving the "simple" problem is, and how a "hide-and-seek" method might come in handy in tackling that problem.
Hurricanes and Climate Change
Abstract
In his talk, Kerry will explore the pressing practical problem of how hurricane activity will respond to global warming, and how hurricanes could in turn be influencing the atmosphere and ocean
Group Cohomology and Quasi-Isometries
Abstract
I will present a basic overview of finiteness conditions, group cohomology, and related quasi-isometry invariance results. In particular, I will show that if a group satisfies certain finiteness conditions, group cohomology with group ring coefficients encodes some structure of the `homology at infinity' of a group. This is seen for hyperbolic groups in the work of Bestvina-Mess, which relates the group cohomology to the Čech cohomology of the boundary.
14:30
Optimal preconditioners for systems defined by functions of Toeplitz matrices
Abstract
We propose several optimal preconditioners for systems defined by some functions $g$ of Toeplitz matrices $T_n$. In this paper we are interested in solving $g(T_n)x=b$ by the preconditioned conjugate method or the preconditioned minimal residual method, namely in the cases when $g(T_n)$ are the analytic functions $e^{T_n}$, $\sin{T_n}$ and $\cos{T_n}$. Numerical results are given to show the effectiveness of the proposed preconditioners.
CAT(0) Boundaries
Abstract
I will talk about the boundaries of CAT(0) groups giving definitions, some examples and will state some theorems. I may even prove something if there is time.