Some ideas on rational/integral points on algebraic curves
Abstract
I will introduce classical results on finiteness theorem with a way of connecting them to idea of covering spaces. I will talk about the proof of FLT under this connection.
I will introduce classical results on finiteness theorem with a way of connecting them to idea of covering spaces. I will talk about the proof of FLT under this connection.
In this talk I will define algebraic automorphic forms, first defined by Gross, which are objects that are conjectured to have Galois representations attached to them. I will explain how this fits into the general picture of the Langlands program and, giving some examples, briefly describe one method of proving certain cases of the conjecture.
This talk will be an easy introduction to some CAT(0) geometry. Among other things, we'll see why centralizers in groups acting geometrically on CAT(0) spaces split (at least virtually). Time permitting, we'll see why having a geometric action on a CAT(0) space is not a quasi-isometry invariant.
For a finitely generated group $G$ with subgroup $H$ we define $e(G,H)$, the relative ends of the pair $(G,H)$, to be the number of ends of the Cayley graph of G quotiented out by the left action of H. We will examine some basic properties of relative ends and will outline the theorem of Sageev showing that $e(G,H)>1$ if and only if $G$ acts essentially on a simply connected CAT(0) cube complex. If time permits, we will outline Niblo's proof of Stallings' theorem using Sageev's construction.
In 1954 Thom showed that there is an isomorphism between the cobordism groups of manifolds and the homotopy groups of the Thom spectrum. I will define what these words mean and present the explicit, geometric construction of the isomorphism.
A basic result in Morse theory due to Reeb states that a compact manifold which admits a smooth function with only two, non-degenerate critical points is homeomorphic to the sphere. We shall apply this idea to distance function associated to a Riemannian metric to prove the diameter-sphere theorem of Grove-Shiohama: A complete Riemannian manifold with sectional curvature $\geq 1$ and diameter $> \pi / 2$ is homeomorphic to a sphere. I shall not assume any knowledge about curvature for the talk.
I will discuss the theory of branched covers of cube complexes as a method of hyperbolisation. I will show recent results using this technique. Time permitting I will discuss a form of Morse theory on simplicial complexes and show how these methods combined with the earlier methods allow one to create groups with interesting finiteness properties.
I will introduce the profinite completion as a way of aggregating information about the finite-sheeted covers of a 3-manifold, and discuss the state of the homeomorphism problem for 3-manifolds in this context; in particular, for geometrizable 3-manifolds.