Mon, 12 Oct 2015
15:45
L6

Fixed Point Properties and Proper Actions on Non-positively Curved Spaces and on Banach Spaces

Cornelia Drutu
(Oxford)
Abstract

One way of understanding groups is by investigating their actions on special spaces, such as Hilbert and Banach spaces, non-positively curved spaces etc. Classical properties like Kazhdan property (T) and the Haagerup property are formulated in terms of such actions and turn out to be relevant in a wide range of areas, from the conjectures of Baum-Connes and Novikov to constructions of expanders. In this talk I shall overview various generalisations of property (T) and Haagerup to Banach spaces, especially in connection with classes of groups acting on non-positively curved spaces.

Mon, 30 Nov 2015
15:45
L6

Bounded cohomology and lattices in product of trees

Alessandra Iozzi
(ETH Zuerich)
Abstract

We will discuss the concept of $\ell^2$-stability of a group and show some of its rigidity consequences.  We provide moreover some very concrete examples of lattices in product of trees that have many interesting properties, $\ell^2$-stability being only one of them.

Mon, 09 Nov 2015
15:45
L6

Koszul duality patterns in Floer theory

Yanki Lekili
(King's College London)
Abstract

We study symplectic invariants of the open symplectic manifolds X
obtained by plumbing cotangent bundles of spheres according to a
plumbing tree. We prove that certain models for the Fukaya category F(X)
of closed exact Lagrangians in X and the wrapped Fukaya category W(X)
are related by Koszul duality. As an application, we give explicit
computations of symplectic cohomology essentially for all trees. This is
joint work with Tolga Etg\"u.

Mon, 02 Nov 2015
15:45
L6

Graphical calculus for 3-dimensional TQFTs

Bruce Bartlett
(Oxford)
Abstract

Recent developments in 3-dimensional topological quantum field theory allow us to understand the vector spaces assigned to surfaces as spaces of string diagrams. In the Reshetikhin-Turaev model, these string diagrams live inside a handlebody bounding the surface, while in the Turaev-Viro model, they live on the surface itself. There is a "lifting map" from the former to the latter, which sheds new light on a number of constructions. Joint with Gerrit Goosen.

Mon, 26 Oct 2015
15:45
L6

A cubical flat torus theorem

Dani Wise
(McGill University and IHP Paris)
Abstract

I will describe a “cubical flat torus theorem” for a group G acting properly and cocompactly on a CAT(0) cube complex.
This states that every “highest” free abelian subgroup of G acts properly and cocompactly on a convex subcomplex that is quasi-isometric to a Euclidean space.
I will describe some simple consequences, as well as the original motivation which was to prove the “bounded packing property” for cyclic subgroups of G.
This is joint work with Daniel Woodhouse.

Mon, 19 Oct 2015
15:45
L6

On the combinatorics of the two-dimensional Ising model

David Cimasoni
(University of Geneva)
Abstract

In the first part of this talk, we will give a very gentle introduction to the Ising model. Then , we will explain a very simple proof of a combinatorial formula for the 2D Ising model partition function using the language of Kac-Ward matrices. This approach can be used for general weighted graphs embedded in surfaces, and extends to the study of several other observables. This is a joint work with Dima Chelkak and Adrien Kassel.
 

Mon, 05 Oct 2015
15:45
L6

Quasicircles

Yves Benoist
(Université Paris XI, ORSAY)
Abstract

If you do not know quasicircles, you will understand what they are.
If you hate quasicircles, you will change your mind.
If you already love quasicircles, they will astonish you once more.

Mon, 16 Nov 2015
15:45
L6

Characterizing a vertex-transitive graph by a large ball

Romain Tessera
(Université Paris XI, ORSAY)
Abstract

It is well-known that a complete Riemannian manifold M which is locally isometric to a symmetric space is covered by a symmetric space. We will prove that a discrete version of this property (called local to global rigidity) holds for a large class of vertex-transitive graphs, including Cayley graphs of torsion-free lattices in simple Lie groups, and Cayley graph of torsion-free virtually nilpotent groups. By contrast, we will exhibit various examples of Cayley graphs of finitely presented groups (e.g. PGL(5, Z)) which fail to have this property, answering a question of Benjamini, Ellis, and Georgakopoulos. This is a joint work with Mikael de la Salle.

Wed, 11 Nov 2015
15:00
L4

Quantum superposition attacks on symmetric encryption protocols

Ruediger Schack
(Royal Holloway, University of London)
Abstract

Quantum computers derive their computational power from the ability to manipulate superposition states of quantum registers. The generic quantum attack against a symmetric encryption scheme with key length n using Grover's algorithm has O(2^(n/2)) time complexity. For this kind of attack, an adversary only needs classical access to an encryption oracle. In this talk I discuss adversaries with quantum superposition access to encryption and decryption oracles. First I review and extend work by Kuwakado and Morii showing that a quantum computer with superposition access to an encryption oracle can break the Even-Mansour block cipher with key length n using only O(n) queries. Then, improving on recent work by Boneh and Zhandry, I discuss indistinguishability notions in chosen plaintext and chosen ciphertext attacks by a quantum adversary with superposition oracle access and give constructions that achieve these security notions.

Subscribe to