14:00
Reducing CO2 emissions for aircraft flights through complex wind fields using three different optimal control approaches
Abstract
Whilst we all enjoy travelling to exciting and far-off locations, the current climate crisis is making flights less and less attractive. But is there anything we can do about this? By plotting courses that make best use of atmospheric data to minimise aircraft fuel burn, airlines can not only save money on fuel, but also reduce emissions, whilst not significantly increasing flight times. In each case the route between London Heathrow Airport and John F Kennedy Airport in New York is considered. Atmospheric data is taken from a re-analysis dataset based on daily averages from 1st December, 2019 to 29th February, 2020.
Initially Pontryagin’s minimum principle is used to find time minimal routes between the airports and these are compared with flight times along the organised track structure routes prepared by the air navigation service providers NATS and NAV CANADA for each day. Efficiency of tracks is measured using air distance, revealing that potential savings of between 0.7% and 16.4% can be made depending on the track flown. This amounts to a reduction of 6.7 million kg of CO2 across the whole winter period considered.
In a second formulation, fixed time flights are considered, thus reducing landing delays. Here a direct method involving a reduced gradient approach is applied to find fuel minimal flight routes either by controlling just heading angle or both heading angle and airspeed. By comparing fuel burn for each of these scenarios, the importance of airspeed in the control formulation is established.
Finally dynamic programming is applied to the problem to minimise fuel use and the resulting flight routes are compared with those actually flown by 9 different models of aircraft during the winter of 2019 to 2020. Results show that savings of 4.6% can be made flying east and 3.9% flying west, amounting to 16.6 million kg of CO2 savings in total.
Thus large reductions in fuel consumption and emissions are possible immediately, by planning time or fuel minimal trajectories, without waiting decades for incremental improvements in fuel-efficiency through technological advances.
14:00
Compatible finite elements for terrain following meshes
Abstract
In this talk we are presenting a new approach for compatible finite element discretisations for atmospheric flows on a terrain following mesh. In classical compatible finite element discretisations, the H(div)-velocity space involves the application of Piola transforms when mapping from a reference element to the physical element in order to guarantee normal continuity. In the case of a terrain following mesh, this causes an undesired coupling of the horizontal and vertical velocity components. We are proposing a new finite element space, that drops the Piola transform. For solving the equations we introduce a hybridisable formulation with trace variables supported on horizontal cell faces in order to enforce the normal continuity of the velocity in the solution. Alongside the discrete formulation for various fluid equations we discuss solver approaches that are compatible with them and present our latest numerical results.
TDA for the organization of regions in segmented images and more
Abstract
Topological data analysis (TDA) comprises a set of techniques of computational topology that has had enormous growth in the last decade, with applications to a wide variety of fields, such as images, biological data, meteorology, materials science, time-dependent data, economics, etc. In this talk, we will first have a walk through a typical pipeline in TDA, to move later to its adaptation to a specific context: the topological characterization of the spatial distribution of regions in a segmented image
The Plankton Hydrodynamic Playbook
Christophe is Professor of Fluid Mechanics at Centrale Marseille. His research activity is carried out at the IRPHE institute in Marseille.
'His research addresses various fundamental problems of fluid and solid mechanics, including fluid-structure interactions, hydrodynamic instabilities, animal locomotion, aeroelasticity, rotating flows, and plant biomechanics. It generally involves a combination of analytical modeling, experiments, and numerical work.' (Taken from his website here: https://www.irphe.fr/~eloy/).'
Abstract
By definition, planktonic organisms drift with the water flows. But these millimetric organisms are not necessarily passive; many can swim and can sense the surrounding flow through mechanosensory hairs. But how useful can be flow sensing in a turbulent environment? To address this question, we show two examples of smart planktonic behavior: (1) we develop a model where plantkters choose a swimming direction as a function of the velocity gradient to "surf on turbulence" and move efficiently upwards; (2) we show how a plankter measuring the velocity gradient may track the position of a swimming target from its hydrodynamic signature.
Ernst Haeckel, Kunstformen der Natur (1904), Copepoda
"Multiple shapes from one elastomer sheet" and "Modelling the onset of arterial blood clotting"
Abstract
Andrea Giudici: Multiple shapes from one elastomer sheet
Active soft materials, such as Liquid Crystal Elastomers (LCEs), possess a unique property: the ability to change shape in response to thermal or optical stimuli. This makes them attractive for various applications, including bioengineering, biomimetics, and soft robotics. The classic example of a shape change in LCEs is the transformation of a flat sheet into a complex curved surface through the imprinting of a spatially varying deformation field. Despite its effectiveness, this approach has one important limitation: once the deformation field is imprinted in the material, it cannot be amended, hindering the ability to achieve multiple target shapes.
In this talk, I present a solution to this challenge and discuss how modulating the degree of actuation using light intensity offers a route towards programming multiple shapes. Moreover, I introduce a theoretical framework that allows us to sculpt any surface of revolution using light.
Edwina Yeo: Modelling the onset of arterial blood clotting
Arterial blood clot formation (thrombosis) is the leading cause of both stroke and heart attack. The blood protein Von Willebrand Factor (VWF) is critical in facilitating arterial thrombosis. At pathologically high shear rates the protein unfolds and rapidly captures platelets from the flow.
I will present two pieces of modelling to predict the location of clot formation in a diseased artery. Firstly a continuum model to describe the mechanosensitive protein VWF and secondly a model for platelet transport and deposition to VWF. We interface this model with in vitro data of thrombosis in a long, thin rectangular microfluidic geometry. Using a reduced model, the unknown model parameters which determine platelet deposition can be calibrated.
12:00
Finite time blowup of incompressible flows surrounding compressible bubbles evolving under soft equations of state
Note: we would recommend to join the meeting using the Zoom client for best user experience.
Robert, formerly a Research Fellow in Nonlinear Dynamics, and a Glasstone Fellow here at the Mathematical Institute. He is now a Senior Lecturer in the Department of Mathematics at the University of Otago, New Zealand. You can read more about Robert's teaching and research here
Abstract
We explore the dynamics of a compressible fluid bubble surrounded by an incompressible fluid of infinite extent in three-dimensions, constructing bubble solutions with finite time blowup under this framework when the equation of state relating pressure and volume is soft (e.g., with volume singularities that are locally weaker than that in the Boyle-Mariotte law), resulting in a finite time blowup of the surrounding incompressible fluid, as well. We focus on two families of solutions, corresponding to a soft polytropic process (with the bubble decreasing in size until eventual collapse, resulting in velocity and pressure blowup) and a cavitation equation of state (with the bubble expanding until it reaches a critical cavitation volume, at which pressure blows up to negative infinity, indicating a vacuum). Interestingly, the kinetic energy of these solutions remains bounded up to the finite blowup time, making these solutions more physically plausible than those developing infinite energy. For all cases considered, we construct exact solutions for specific parameter sets, as well as analytical and numerical solutions which show the robustness of the qualitative blowup behaviors for more generic parameter sets. Our approach suggests novel -- and perhaps physical -- routes to the finite time blowup of fluid equations.
12:00
Copolymer templating from a mathematical and physical perspective
Thomas is a Reader in Biomolecular Systems in the Department of Bioengineering at Imperial College. He leads the "Principles of Biomolecular Systems" group. 'His group probes the fundamental principles underlying complex biochemical systems through theoretical modelling, simulation and experiment.' (Taken from his website: https://www.imperial.ac.uk/principles-of-biomolecular-systems/)
You can also learn more about their work via their blog here
Abstract
Biological systems achieve their complexity by processing and exploiting information stored in molecular copolymers such as DNA, RNA and proteins. Despite the ubiquity and power of this approach in natural systems, our ability to implement similar functionality in synthetic systems is very limited. In this talk, we will first outline a new mathematical framework for analysing general models of colymerisation for infinitely long polymers. For a given model of copolymerisation, this approach allows for the extraction of key quantities such as the sequence distribution, speed of polymerisation and the rate of molecular fuel consumption without resorting to simulation. Subsequently, we will explore mechanisms that allow for reliable copying of the information stored in finite-length template copolymers, before touching on recent experimental work in which these ideas are put into practice.