13:00
Celestial Holography and Self-Dual Einstein Gravity
Abstract
Celestial Holography posits the existence of a holographic description of gravitational theories in asymptotically flat space-times. To date, top-down constructions of such dualities involve a combination of twisted holography and twistor theory. The gravitational theory is the closed string B model living in a suitable twistor space, while the dual is a chiral 2d gauge theory living on a stack of D1 branes wrapping a twistor line. I’ll talk about a variant of these models that yields a theory of self-dual Einstein gravity (via the Plebanski equations) in four dimensions. This is based on work in progress with Roland Bittleston, Kevin Costello & Atul Sharma.
14:15
ALC G2-manifolds
Abstract
ALF gravitational instantons, of which the Taub-NUT and Atiyah-Hitchin metrics are prototypes, are the complete non-compact hyperkähler 4-manifolds with cubic volume growth. Examples have been known since the 1970's, but a complete classification was only given around 10 years ago. In this talk, I will present joint work with Haskins and Nordström where we extend some of these results to complete non-compact 7-manifolds with holonomy G2 and an asymptotic geometry, called ALC (asymptotically locally conical), that generalises to higher dimension the asymptotic geometry of ALF spaces.
16:00
Manin's conjecture for Châtelet surfaces
Abstract
We resolve Manin's conjecture for all Châtelet surfaces over Q
(surfaces given by equations of the form x^2 + ay^2 = f(z)) -- in other
words, we establish asymptotics for the number of rational points of
increasing height. The key analytic ingredient is estimating sums of
Fourier coefficients of modular forms along polynomial values.
14:00
On the mod-$p$ cohomology of certain $p$-saturable groups.
Abstract
The mod-$p$ cohomology of uniform pro-$p$ groups has been calculated by Lazard in the 1960s. Motivated by recent considerations in the mod-$p$ Langlands program, we consider the problem of extending his results to the case of compact $p$-adic Lie groups $G$ that are $p$-saturable but not necessarily uniform pro-$p$: when $F$ is a finite extension of $\mathbb{Q}_p$ and $p$ is sufficiently large, this class of groups includes the so-called pro-$p$ Iwahori subgroups of $SL_n(F)$. In general, there is a spectral sequence due to Serre and Lazard that relates the mod-$p$ cohomology of $G$ to the cohomology of its associated graded mod-$p$ Lie algebra $\mathfrak{g}$. We will discuss certain sufficient conditions on $p$ and $G$ that ensure that this spectral sequence collapses. When these conditions hold, it follows that the mod-$p$ cohomology of $G$ is isomorphic to the cohomology of the Lie algebra $\mathfrak{g}$.
15:00
Virtually free-by-cyclic RFRS groups
Abstract
A group is free-by-cyclic if it is an extension of a free group by a cyclic group. Knowing that a group is virtually free-by-cyclic is often quite useful; it implies that the group is coherent and that it is cohomologically good in the sense of Serre. In this talk we will give a homological characterisation of when a finitely generated RFRS group is virtually free-by-cylic and discuss some generalisations.
15:00
Totally disconnected locally finite groups of prescribed finiteness lengths
Abstract
In this talk I will give an introduction to analogues to the classical finiteness conditions FP_n for totally disconnected locally compact groups. I will present a construction of non-discrete tdlc groups of arbitrary finiteness length. As a bi-product we also obtain a new collection of (discrete) Thompson-like groups which contains, for all positive integers n, groups of type FP_n but not of type FP_{n+1}. This is joint work with I. Castellano, B. Marchionna, and Y. Santos-Rego.
15:00
Fixed points, splittings and division rings
Abstract
Let G be a free group of rank N, let f be an automorphism of G and let Fix(f) be the corresponding subgroup of fixed points. Bestvina and Handel showed that the rank of Fix(f) is at most N, for which they developed the theory of train track maps on free groups. Different arguments were provided later on by Sela, Paulin and Gaboriau-Levitt-Lustig. In this talk, we present a new proof which involves the Linnell division ring of G. We also discuss how our approach relates to previous ones and how it gives new insight into variations of the problem.