Tue, 28 Nov 2017

14:00 - 14:30
L3

Tomosynthesis with nonlinear compressed sensing

Raphael Hauser
(University of Oxford)
Abstract

A new generation of low cost 3D tomography systems is based on multiple emitters and sensors that partially convolve measurements. A successful approach to deconvolve the measurements is to use nonlinear compressed sensing models. We discuss such models, as well as algorithms for their solution. 

Tue, 28 Nov 2017

12:45 - 13:30
C5

Passive control of viscous flow via elastic snap-through

Michael Gomez
(Mathematical Institute)
Abstract

Snap-through buckling is a type of instability in which an elastic object rapidly jumps from one state to another, just as an umbrella flips upwards in a gust of wind. While snap-through under dry, mechanical loads has already been harnessed in engineering to generate fast motions between two states, the mechanisms underlying snapping in bulk fluid flows remain relatively unexplored. In this talk we demonstrate how elastic snap-through may be used to passively control fluid flows at low Reynolds number, in contrast to some pre-existing valves that rely on active control. We study viscous flow through a channel in which one of the bounding walls is an elastic arch. By performing experiments at the macroscopic scale, we show that snap-through of the arch rapidly changes the channel from a constricted to an unconstricted state, increasing the hydraulic conductivity by up to an order of magnitude. We also observe nonlinear pressure-flux characteristics away from snapping due to the coupling between the driving flow and elasticity. This behaviour is confirmed by a mathematical model that also shows the device may readily be scaled down for microfluidic applications. Finally, we demonstrate that such a device may be used to create a fluidic analogue of a fuse: the fluid flux through a channel may not rise above a given value. 

The Alan Turing Institute is the national institute for data science, headquartered at the British Library. Five founding universities – Cambridge, Edinburgh, Oxford, UCL and Warwick – and the UK Engineering and Physical Sciences Research Council created The Institute in 2015. Now we are delighted to announce that four universities - Leeds, Manchester, Newcastle and Queen Mary University of London - are also set to join the Institute as university partners.

Wed, 22 Nov 2017

16:00 - 17:00
C4

Warped cones as coarse invariants for actions.

Federico Vigolo
(University of Oxford)
Abstract

Warped cones are infinite metric spaces that are associated with actions by homeomorphisms on metric spaces. In this talk I will try to explain why the coarse geometry of warped cones can be seen as an invariant of the action and what it can tell us about the acting group.

When they aren't in their offices doing Maths our Faculty can be found in their offices writing books about doing Maths. Here is a recent sample of their labours. 

Richard Earl's 'Towards Higher Mathematics: A Companion' aims, as its title suggests, to bridge the gap between school and University, giving sixth-formers an insight into and preparation for the mathematics they will be studying at University.

Tue, 21 Nov 2017
16:00
L6

Local limit theorem for the number of K4 in G(n,p)

Sophia Saller
(Oxford University)
Abstract

Understanding the distribution of subgraph counts has long been a central question in the study of random graphs. In this talk, we consider the distribution of Sn, the number of K4 subgraphs, in the Erdös Rényi random graph G(n, p). When the edge probability p \in (0, 1) is constant, a classical central limit theorem for Sn states that (Sn−µn)/σn converges in distribution. We establish a stronger form of convergence, namely the corresponding local limit theorem, which is joint work with O. Riordan.
 

Supporting female students is a priority for us, particularly on courses where women have historically been underrepresented. We are delighted that, due to the support of Booking.com, the University can offer 10 scholarships to female Home/EU students studying MScs in mathematics, statistics and computer science in 2018-19.
Subscribe to