As part of our series of research articles focusing on the rigour and intricacies of mathematics and its problems, Oxford Mathematician David Hume discusses his work on networks and expanders.
Invariance principle for non-homogeneous random walks with anomalous recurrence properties
Abstract
Abstract: In this talk we describe an invariance principle for a class of non-homogeneous martingale random walks in $\RR^d$ that can be recurrent or transient for any dimension $d$. The scaling limit, which we construct, is a martingale diffusions with law determined uniquely by an SDE with discontinuous coefficients at the origin whose pathwise uniqueness may fail. The radial component of the diffusion is a Bessel process of dimension greater than 1. We characterize the law of the diffusion, which must start at the origin, via its excursions built around the Bessel process: each excursion has a generalized skew-product-type structure, in which the angular component spins at infinite speed at the start and finish of each excursion. Defining a Riemannian metric $g$ on the sphere $S^{d−1}$, different from the one induced by the ambient Euclidean space, allows us to give an explicit construction of the angular component (and hence of the entire skew-product decomposition) as a time-changed Browninan motion with drift on the Riemannian manifold $(S^{d−1}, g)$. In particular, this provides a multidimensional generalisation of the Pitman–Yor representation of the excursions of Bessel process with dimension between one and two. Furthermore, the density of the stationary law of the angular component with respect to the volume element of $g$ can be characterised by a linear PDE involving the Laplace–Beltrami operator and the divergence under the metric $g$. This is joint work with Nicholas Georgiou and Andrew Wade.
A Hopf-Lax splitting approximation for quasilinear parabolic PDEs with convex and quadratic growth gradients
Abstract
We propose a new splitting algorithm to solve a class of quasilinear PDEs with convex and quadratic growth gradients.
By splitting the original equation into a linear parabolic equation and a Hamilton-Jacobi equation, we are able to solve both equations explicitly.
In particular, we solve the associated Hamilton-Jacobi equation by the Hopf-Lax formula,
and interpret the splitting algorithm as a stochastic Hopf-Lax approximation of the quasilinear PDE.
We show that the numerical solution will converge to the viscosity solution of the equation.
The upper bound of the convergence rate is proved based on Krylov's shaking coefficients technique,
while the lower bound is proved based on Barles-Jakobsen's optimal switching approximation technique.
Based on joint work with Shuo Huang and Thaleia Zariphopoulou.
Detecting early signs of depressive and manic episodes in patients with bipolar disorder using the signature-based model
Abstract
Recurrent major mood episodes and subsyndromal mood instability cause substantial disability in patients with bipolar disorder. Early identification of mood episodes enabling timely mood stabilisation is an important clinical goal. The signature method is derived from stochastic analysis (rough paths theory) and has the ability to capture important properties of complex ordered time series data. To explore whether the onset of episodes of mania and depression can be identified using self-reported mood data.
SLE and Rough Paths Theory
Abstract
In this talk, I am going to report on some on-going research at the interface between Rough Paths Theory and Schramm-Loewner evolutions (SLE). In this project, we try to adapt techniques from Rough Differential Equations to the study of the Loewner Differential Equation. The main ideas concern the restart of the backward Loewner differential equation from the singularity in the upper half plane. I am going to describe some general tools that we developed in the last months that lead to a better understanding of the dynamics in the closed upper half plane under the backward Loewner flow.
Joint work with Prof. Dmitry Belyaev and Prof. Terry Lyons
Lie-Butcher series and rough paths on homogeneous manifolds I+II
Abstract
Abstract: Butcher’s B-series is a fundamental tool in analysis of numerical integration of differential equations. In the recent years algebraic and geometric understanding of B-series has developed dramatically. The interplay between geometry, algebra and computations reveals new mathematical landscapes with remarkable properties.
The shuffle Hopf algebra, which is fundamental in Lyons’s groundbreaking work on rough paths, is based on Lie algebras without additional properties. Pre-Lie algebras and the Connes-Kreimer Hopf algebra are providing algebraic descriptions of the geometry of Euclidean spaces. This is the foundation of B-series and was used elegantly in Gubinelli’s theory of Branched Rough Paths.
Lie-Butcher theory combines Lie series with B-series in a unified algebraic structure based on post-Lie algebras and the MKW Hopf algebra, which is giving algebraic abstractions capturing the fundamental geometrical properties of Lie groups, homogeneous spaces and Klein geometries.
In these talks we will give an introduction to these new algebraic structures. Building upon the works of Lyons, Gubinelli and Hairer-Kelly, we will present a new theory for rough paths on homogeneous spaces built upon the MKW Hopf algebra.
Joint work with: Charles Curry and Dominique Manchon
Lie-Butcher series and rough paths on homogeneous manifolds I+II
Abstract
Abstract: Butcher’s B-series is a fundamental tool in analysis of numerical integration of differential equations. In the recent years algebraic and geometric understanding of B-series has developed dramatically. The interplay between geometry, algebra and computations reveals new mathematical landscapes with remarkable properties.
The shuffle Hopf algebra, which is fundamental in Lyons’s groundbreaking work on rough paths, is based on Lie algebras without additional properties. Pre-Lie algebras and the Connes-Kreimer Hopf algebra are providing algebraic descriptions of the geometry of Euclidean spaces. This is the foundation of B-series and was used elegantly in Gubinelli’s theory of Branched Rough Paths.
Lie-Butcher theory combines Lie series with B-series in a unified algebraic structure based on post-Lie algebras and the MKW Hopf algebra, which is giving algebraic abstractions capturing the fundamental geometrical properties of Lie groups, homogeneous spaces and Klein geometries.
In these talks we will give an introduction to these new algebraic structures. Building upon the works of Lyons, Gubinelli and Hairer-Kelly, we will present a new theory for rough paths on homogeneous spaces built upon the MKW Hopf algebra.
Joint work with: Charles Curry and Dominique Manchon
Karhunen Loeve expansions in regularity structures.
Abstract
We consider L^2-approximations of white noise within the framework of regularity structures. Possible applications include support theorems for SPDEs driven by degenerate noises and numerics. Joint work with Ilya Chevyrev, Peter Friz and Tom Klose.
Volume distribution of nodal domains of random band-limited functions
Abstract
This talk is based on a joint work with Dmitry Beliaev.
We study the volume distribution of nodal domains of families of naturally arising Gaussian random field on generic manifolds, namely random band-limited functions. It is found that in the high energy limit a typical instance obeys a deterministic universal law, independent of the manifold. Some of the basic qualitative properties of this law, such as its support, monotonicity and continuity of the cumulative probability function, are established.
Statistics and Rough Paths
Abstract
Having made sense of differential equations driven by rough paths, we now have a new set of models available but when it comes to calibrating them to data, the tools are still underdeveloped. I will present some results and discuss some challenges related to building these tools.