Tue, 23 Jun 2015

15:30 - 16:30
L1

Analytic and Arithmetic Geometry Workshop: Quasi-abelian categories in analytic geometry

Federico Bambozzi
(University of Regensburg)
Abstract

I will describe a categorical approach to analytic geometry using the theory of quasi-abelian closed symmetric monoidal categories which works both for Archimedean and non-Archimdedean base fields. In particular I will show how the weak G-topologies of (dagger) affinoid subdomains can be characterized by homological method. I will end by briefly saying how to generalize these results for characterizing open embeddings of Stein spaces. This project is a collaboration with Oren Ben-Bassat and Kobi Kremnizer.

Tue, 23 Jun 2015

14:00 - 15:00
L1

Analytic and Arithmetic Geometry Workshop: Overconvergent global analytic geometry

Frederic Paugam
(Institut de Mathématiques de Jussieu (Paris 7))
Abstract

We will discuss our approach to global analytic geometry, based on overconvergent power series and functors of functions. We will explain how slight modifications of it allow us to develop a derived version of global analytic geometry. We will finish by discussing applications to the cohomological study of arithmetic varieties.

Tue, 23 Jun 2015

10:00 - 11:00
L1

Analytic and Arithmetic Geometry Workshop: Variations on quadratic Chabauty

Jennifer Balakrishnan
((Oxford University))
Abstract

We describe how p-adic height pairings allow us to find integral points on hyperelliptic curves, in the spirit of Kim's nonabelian Chabauty program. In particular, we discuss how to carry out this ``quadratic Chabauty'' method over quadratic number fields (joint work with Amnon Besser and Steffen Mueller) and present related ideas to find rational points on bielliptic genus 2 curves (joint work with Netan Dogra).

Simplified Models for Dark Matter Searches at the LHC
Abdallah, J others, E Lucas, R Thomas, M Tomalin, I Wielers, M Worm, S Feldstein, B Haisch, U Hibbs, A Re, E Sarkar, S (01 Jan 2015)
Tue, 16 Jun 2015

11:00 - 12:30
N3.12

(Spin) Topological Quantum Field Theory

Thomas Wasserman
(Oxford)
Abstract

This'll be a nice and slow paced introduction to topological quantum field theory in general, and 1-2-3 dimensional theories in particular. If time permits I will explain the spin version of these and their connection to physics. There will be lots of pictures. 

Subscribe to