Mon, 25 Nov 2024
14:15
L4

CANCELLED

Simon Felten
(Oxford)
Abstract

A well-known problem in algebraic geometry is to construct smooth projective Calabi--Yau varieties $Y$. In the smoothing approach, we construct first a degenerate (reducible) Calabi--Yau scheme $V$ by gluing pieces. Then we aim to find a family $f\colon X \to C$ with special fiber $X_0 = f^{-1}(0) \cong V$ and smooth general fiber $X_t = f^{-1}(t)$. In this talk, we see how infinitesimal logarithmic deformation theory solves the second step of this approach: the construction of a family out of a degenerate fiber $V$. This is achieved via the logarithmic Bogomolov--Tian--Todorov theorem as well as its variant for pairs of a log Calabi--Yau space $f_0\colon X_0 \to S_0$ and a line bundle $\mathcal{L}_0$ on $X_0$.
 

It's Happy Hour again.

5pm, Common Room

Image: William Hogarth - Gin Lane

Hogarth's Gin Lane
Guest editorial: special issue on graph learning
Xia, F Lambiotte, R Shah, N Tong, H King, I IEEE Transactions on Neural Networks and Learning Systems volume 35 issue 9 11630-11633 (03 Sep 2024)
Mon, 28 Oct 2024
15:30
L3

Higher Order Lipschitz Functions in Data Science

Dr Andrew Mcleod
(Mathematical Institute)
Abstract

The notion of Lip(gamma) Functions, for a parameter gamma > 0, introduced by Stein in the 1970s (building on earlier work of Whitney) is a notion of smoothness that is well-defined on arbitrary closed subsets (including, in particular, finite subsets) that is instrumental in the area of Rough Path Theory initiated by Lyons and central in recent works of Fefferman. Lip(gamma) functions provide a higher order notion of Lipschitz regularity that is well-defined on arbitrary closed subsets, and interacts well with the more classical notion of smoothness on open subsets. In this talk we will survey the historical development of Lip(gamma) functions and illustrate some fundamental properties that make them an attractive class of function to work with from a machine learning perspective. In particular, models learnt within the class of Lip(gamma) functions are well-suited for both inference on new unseen input data, and for allowing cost-effective inference via the use of sparse approximations found via interpolation-based reduction techniques. Parts of this talk will be based upon the works https://arxiv.org/abs/2404.06849 and https://arxiv.org/abs/2406.03232.

Low Depth Phase Oracle Using a Parallel Piecewise Circuit
Sun, Z Boyd, G Cai, Z Jnane, H Koczor, B Meister, R Minko, R Pring, B Benjamin, S Stamatopoulos, N (06 Sep 2024)
Finite element approximation of stationary Fokker--Planck--Kolmogorov equations with application to periodic numerical homogenization
Sprekeler, T Süli, E Zhang, Z (11 Sep 2024)
Tue, 15 Oct 2024
14:00
L6

Undergraduate Summer Project Presentations: Spin Representations for Coxeter Groups and Generalised Saxl Conjecture

Yutong Chen, University of Cambridge, Li Gu, University of Oxford, and William Osborne, University of Oxford
Abstract

A well-known open problem for representations of symmetric groups is the Saxl conjecture. In this talk, we put Saxl's conjecture into a Lie-theoretical framework and present a natural generalisation to Weyl groups. After giving necessary preliminaries on spin representations and the Springer correspondence, we present our progress on the generalised conjecture. Next, we reveal connections to tensor product decomposition problems in symmetric groups and provide an alternative description of Lusztig’s cuspidal families. Finally, we propose a further generalisation to all finite Coxeter groups.

Mon, 18 Nov 2024
15:30
L5

Equivariant log concavity and representation stability

Nicholas Proudfoot
(University of Oregon)
Abstract

June Huh proved in 2012 that the Betti numbers of the complement of a complex hyperplane arrangement form a log concave sequence.  But what if the arrangement has symmetries, and we regard the cohomology as a representation of the symmetry group?  The motivating example is the braid arrangement, where the complement is the configuration space of n points in the plane, and the symmetric group acts by permuting the points.  I will present an equivariant log concavity conjecture, and show that one can use representation stability to prove infinitely many cases of this conjecture for configuration spaces.
 

Thu, 24 Oct 2024
16:00
Lecture Room 3

Non-generic components of the Emerton-Gee stack for $\mathrm{GL}_{2}$

Kalyani Kansal
(Imperial College London)
Abstract

Let $K$ be an unramified extension of $\mathbb{Q}_p$ for a prime $p > 3$. The reduced part of the Emerton-Gee stack for $\mathrm{GL}_{2}$ can be viewed as parameterizing two-dimensional mod $p$ Galois representations of the absolute Galois group of $K$. In this talk, we will consider the extremely non-generic irreducible components of this reduced part and see precisely which ones are smooth or normal, and which have Gorenstein normalizations. We will see that the normalizations of the irreducible components admit smooth-local covers by resolution-rational schemes. We will also determine the singular loci on the components, and use these results to update expectations about the conjectural categorical $p$-adic Langlands correspondence. This is based on recent joint work with Ben Savoie.

Subscribe to