One-Day Meeting in Combinatorics
The speakers are Carla Groenland (Delft), Shoham Letzter (UCL), Nati Linial (Hebrew University of Jerusalem), Piotr Micek (Jagiellonian University), and Gabor Tardos (Renyi Institute). Please see the event website for further details including titles, abstracts, and timings. Anyone interested is welcome to attend, and no registration is required.
Universality for transversal Hamilton cycles
Abstract
An interesting twist on classical subgraph containment problems in graph theory is the following: given a graph $H$ and a collection $\{G_1, \dots , G_m\}$ of graphs on a common vertex set $[n]$, what conditions on $G_i$ guarantee a copy of $H$ using at most one edge from each $G_i$? Such a subgraph is called transversal, and the above problem is closely related to the study of temporal graphs in Network Theory. In 2020 Joos and Kim showed that if $\delta(G_i)\geq n/2$, the collection contains a transversal Hamilton cycle. We improve on their result by showing that it actually contains every transversal Hamilton cycle if $\delta(G_i)\geq (1/2+o(1))n$. That is, for every function $\chi:[n]\to[m]$, there is a Hamilton cycle whose $i$-th edge belongs to $G_{\chi(i)}$.
This is joint work with Candida Bowtell, Patrick Morris and Katherine Staden.
Percolation through isoperimetry
Abstract
Let $G$ be a $d$-regular graph of growing degree on $n$ vertices. Form a random subgraph $G_p$ of $G$ by retaining edge of $G$ independently with probability $p=p(d)$. Which conditions on $G$ suffice to observe a phase transition at $p=1/d$, similar to that in the binomial random graph $G(n,p)$, or, say, in a random subgraph of the binary hypercube $Q^d$?
We argue that in the supercritical regime $p=(1+\epsilon)/d$, $\epsilon>0$ a small constant, postulating that every vertex subset $S$ of $G$ of at most $n/2$ vertices has its edge boundary at least $C|S|$, for some large enough constant $C=C(\epsilon)>0$, suffices to guarantee likely appearance of the giant component in $G_p$. Moreover, its asymptotic order is equal to that in the random graph $G(n,(1+\epsilon)/n)$, and all other components are typically much smaller.
We also give examples demonstrating tightness of our main result in several key senses.
A joint work with Sahar Diskin, Joshua Erde and Mihyun Kang.
The Erdös–Rényi random graph conditioned on being a cluster graph
Abstract
A cluster graph is a disjoint union of complete graphs. We consider the random $G(n,p)$ graph on $n$ vertices with connection probability $p$, conditioned on the rare event of being a cluster graph. There are three main motivations for our study.
- For $p = 1/2$, each random cluster graph occurs with the same probability, resulting in the uniform distribution over set partitions. Interpreting such a partition as a graph adds additional structural information.
- To study how the law of a well-studied object like $G(n,p)$ changes when conditioned on a rare event; an evidence of this fact is that the conditioned random graph overcomes a phase transition at $p=1/2$ (not present in the dense $G(n,p)$ model).
- The original motivation was an application to community detection. Taking a random cluster graph as a model for a prior distribution of a partition into communities leads to significantly better community-detection performance.
This is joint work with Martijn Gösgens, Lukas Lüchtrath, Elena Magnanini and Élie de Panafieu.
The rainbow saturation number
Abstract
The saturation number of a graph is a famous and well-studied counterpoint to the Turán number, and the rainbow saturation number is a generalisation of the saturation number to the setting of coloured graphs. Specifically, for a given graph $F$, an edge-coloured graph is $F$-rainbow saturated if it does not contain a rainbow copy of $F$, but the addition of any non-edge in any colour creates a rainbow copy of $F$. The rainbow saturation number of $F$ is the minimum number of edges in an $F$-rainbow saturated graph on $n$ vertices. Girão, Lewis, and Popielarz conjectured that, like the saturation number, for all $F$ the rainbow saturation number is linear in $n$. I will present our attractive and elementary proof of this conjecture, and finish with a discussion of related results and open questions.
13:00
Disordered quantum critical fixed points from holography
Abstract
In this talk I will describe the systematic construction of strongly interacting RG fixed points with a finite disorder strength. Such random-field disorder is quite common in condensed matter experiment, necessitating an understanding of the effects of this disorder on the properties of such fixed points. In the past, such disordered fixed points were accessed using e.g. epsilon expansions in perturbative quantum field theory, using the replica method to treat disorder. I will show that holography gives an alternative picture for RG flows towards disordered fixed points. In holography, spatially inhomogeneous disorder corresponds to inhomogeneous boundary conditions for an asymptotically-AdS spacetime, and the RG flow of the disorder strength is captured by the solution to the Einstein-matter equations. Using this construction, we have found analytically-controlled RG fixed points with a finite disorder strength. Our construction accounts for, and explains, subtle non-perturbative geometric effects that had previously been missed. Our predictions are consistent with conformal perturbation theory when studying disordered holographic CFTs, but the method generalizes and gives new models of disordered metallic quantum criticality.