Wed, 22 Nov 2023

16:00 - 17:00
L6

3-manifold algorithms, representation theory, and the generalised Riemann hypothesis

Adele Jackson
(University of Oxford)
Abstract

You may be surprised to see the generalised Riemann hypothesis appear in algorithmic topology. For example, knottedness was originally shown to be in NP under the assumption of GRH.
Where does this condition come from? We will discuss this in the context of 3-sphere recognition, and examine why the approach fails for higher dimensions.

Wed, 15 Nov 2023

16:00 - 17:00
L6

Fáry-Milnor type theorems

Shaked Bader
(University of Oxford)
Abstract
In 1947 Karol Borsuk conjectured that if an ant is walking on a circle embedded piecewise linearly in 3 and is not dizzy (did not wind around itself twice) then the circle bounds a disc. He actually phrased it as follows: the total curvature of a knotted knot must be at least 4π
One may ask the same question with other spaces instead of 3.
We will present Milnor's proof of the classical conjecture, then define CAT(0) spaces and present some ideas from Stadler's proof in that setting and a more elementary proof in the setting of CAT(0) polygonal complexes.
 
Wed, 08 Nov 2023

16:00 - 17:00
L6

Navigating the curve graph with train tracks

Filippo Baroni
(University of Oxford)
Abstract

It is a truth universally acknowledged, that an infinite group in possession of a good algebraic structure, must be in want of a hyperbolic space to act on. For the mapping class group of a surface, one of the most popular choices is the curve graph. This is a combinatorial object, built from curves on the surface and intersection patterns between them.
Hyperbolicity of the curve graph was proved by Masur and Minsky in a celebrated paper in 1999. In the same article, they showed how the geometry of the action on this graph reflects dynamical/topological properties of the mapping class group; in particular, loxodromic elements are precisely the pseudo-Anosov mapping classes.
In light of this, one would like to better understand distances in the curve graph. The graph is locally infinite, and finding a shortest path between two vertices is highly non-trivial. In this talk, we will see how to use the machinery of train tracks to overcome this issue and compute (approximate) distances in the curve graph. If time permits -- which, somehow, it never does -- we will also analyse this construction from an algorithmic perspective.

Wed, 25 Oct 2023

16:00 - 17:00
L6

Alternating knots and branched double covers

Soheil Azarpendar
(University of Oxford)
Abstract

An old and challenging conjecture proposed by R.H. Fox in 1962 states that the absolute values of the coefficients of the Alexander polynomial of an alternating knot are trapezoidal i.e. strictly increase, possibly plateau, then strictly decrease. We give a survey of the known results and use them to motivate the study of branched double covers. The second part of the talk focuses on the properties of the branched double covers of alternating knots.

Wed, 01 Nov 2023

16:00 - 17:00
L6

Topology and dynamics on the space of subgroups

Pénélope Azuelos
(University of Bristol)
Abstract

The space of subgroups of a countable group is a compact topological space which encodes many of the properties of its non-free actions. We will discuss some approaches to studying the Cantor-Bendixson decomposition of this space in the context of hyperbolic groups and groups which act (nicely) on trees. We will also give some conditions under which the conjugation action on the perfect kernel is highly topologically transitive and see how this can be applied to find new examples of groups (including all virtually compact special groups) which admit faithful transitive amenable actions. This is joint work with Damien Gaboriau.

Joseph McGovern DPhil Thesis Data
McGovern, J Candelas, P (01 Jan 2023)
Poster for lecture

Physicists and chemists are used to dealing with quantum mechanics, but biologists have thus far got away without having to worry about this strange yet powerful theory of the subatomic world. However, times are changing as Jim Khalili describes in this Oxford Mathematics Roger Penrose Public Lecture.

Efficient multifidelity likelihood-free Bayesian inference with adaptive computational resource allocation
Prescott, T Warne, D Baker, R Journal of Computational Physics volume 496 (23 Oct 2023)
Mon, 19 Feb 2024

14:00 - 15:00
Lecture Room 3

This seminar has been cancelled

Mihai Badiu
(Department of Engineering Science University of Oxford)
Abstract

Data that have an intrinsic network structure can be found in various contexts, including social networks, biological systems (e.g., protein-protein interactions, neuronal networks), information networks (computer networks, wireless sensor networks),  economic networks, etc. As the amount of graphical data that is generated is increasingly large, compressing such data for storage, transmission, or efficient processing has become a topic of interest. 

In this talk, I will give an information theoretic perspective on graph compression. The focus will be on compression limits and their scaling with the size of the graph. For lossless compression, the Shannon entropy gives the fundamental lower limit on the expected length of any compressed representation. 
I will discuss the entropy of some common random graph models, with a particular emphasis on our results on the random geometric graph model. 
Then, I will talk about the problem of compressing a graph with side information, i.e., when an additional correlated graph is available at the decoder. Turning to lossy compression, where one accepts a certain amount of distortion between the original and reconstructed graphs, I will present theoretical limits to lossy compression that we obtained for the Erdős–Rényi and stochastic block models by using rate-distortion theory.

Subscribe to