IceCube Neutrino Observatory
IceCube Neutrino Observatory
14:30
High-Order Finite Element Schemes for Multicomponent Flow Problems
Abstract
The Stokes–Onsager–Stefan–Maxwell (SOSM) equations model the flow of concentrated mixtures of distinct chemical species in a common thermodynamic phase. We derive a novel variational formulation of these nonlinear equations in which the species mass fluxes are treated as unknowns. This new formulation leads to a large class of high-order finite element schemes with desirable linear-algebraic properties. The schemes are provably convergent when applied to a linearization of the SOSM problem.
14:00
A Nematic Theory For a Nonspherical Rarefied Gas
Abstract
We propose a nematic model for polyatomic gas, intending to study anisotropic phenomena. Such phenomena stem from the orientational degree of freedom associated with the rod-like molecules composing the gas. We adopt as a primer the Curitss-Boltzmann equation. The main difference with respect to Curtiss theory of hard convex body fluids is the fact that the model here presented takes into account the emergence of a nematic ordering. We will also derive from a kinetic point of view an energy functional similar to the Oseen-Frank energy. The application of the Noll-Coleman procedure to derive new expressions for the stress tensor and the couple-stress tensor will lead to a model capable of taking into account anisotropic effects caused by the emergence of a nematic ordering. In the near future, we hope to adopt finite-element discretisations together with multi-scale methods to simulate the integro-differential equation arising from our model.
A mathematical framework for modelling order book dynamics
Abstract
This talk presents a general framework for modelling the dynamics of limit order books, built on the combination of two modelling ingredients: the order flow, modelled as a general spatial point process, and the market clearing, modelled via a deterministic ‘mass transport’ operator acting on distributions of buy and sell orders. At the mathematical level, this corresponds to a natural decomposition of the infinitesimal generator describing the order book evolution into two operators: the generator of the order flow and the clearing operator. Our model provides a flexible framework for modelling and simulating order book dynamics and studying various scaling limits of discrete order book models. We show that our framework includes previous models as special cases and yields insights into the interplay between order flow and price dynamics. This talk is based on joint work with Rama Cont and Pierre Degond.
Bifurcations leading to oscillation in small chemical reaction networks
Abstract
12:00
Reconciling ecology and evolutionary game theory: or ‘when not to think cooperation’
Abstract
I’m excited to share with everyone some new, unpublished work that we are just in the process of wrapping up and could use everyone’s reactions. It is a reconciliation of evolutionary game theory and ecological dynamics that I have wrestled with since I moved from an evolution program into an ecology-heavy department. It always seemed like, depending on the problem I was thinking about, I had to change my perspective and approach it as either an evolutionary game theorist, or an ecologist; and yet I had this nagging feeling that, at its core, the problem was often one and the same, and therefore one theoretical framework should suffice. So when should one write down an n-type replicator equation and when should one write down an n-species Lotka-Volterra system; and what does it mean mathematically and biologically when one has made such a choice? In the process of reconciling, I also got a deeper appreciation of what is and is not a proper game, such as a Prisoner’s Dilemma. These findings can help shed light on previously puzzling empirical findings.
12:00
Plant Tropisms as a Window on Plant Computational Processes
Note: we would recommend to join the meeting using the Zoom client for best user experience.
Abstract
A growing plant is a fascinating system involving multiple fields. Biologically, it is a multi-cellular system controlled by bio-chemical networks. Physically, it is an example of an "active solid" whose element (cells) are active, performing mechanical work to drive the evolving geometry. Computationally, it is a distributed system, processing a multitude of local inputs into a coordinated developmental response. In this talk I will discuss how plants, a living information-processing organism, uses physical laws and biological mechanisms to alter its own shape, and negotiate its environment. Here I will focus on two examples reflecting the computational and mechanical aspects: (i) probing temporal integration in gravitropic responses reveals plants sum and subtract signals, (ii) the interplay between active growth-driven processes and passive mechanics.