Tue, 28 Jun 2022

14:00 - 15:00
C3

The temporal rich club phenomenon

Nicola Pedreschi
(Mathematical Institute (University of Oxford))
Abstract

Identifying the hidden organizational principles and relevant structures of complex networks is fundamental to understand their properties. To this end, uncovering the structures involving the prominent nodes in a network is an effective approach. In temporal networks, the simultaneity of connections is crucial for temporally stable structures to arise. In this work, we propose a measure to quantitatively investigate the tendency of well-connected nodes to form simultaneous and stable structures in a temporal network. We refer to this tendency as the temporal rich club phenomenon, characterized by a coefficient defined as the maximal value of the density of links between nodes with a minimal required degree, which remain stable for a certain duration. We illustrate the use of this concept by analysing diverse data sets and their temporal properties, from the role of cohesive structures in relation to processes unfolding on top of the network to the study of specific moments of interest in the evolution of the network.

Article link: https://www.nature.com/articles/s41567-022-01634-8

Tue, 21 Jun 2022

14:00 - 15:00
C6

Sequential Motifs in Observed Walks

Timothy LaRock
(Mathematical Institute (University of Oxford))
Abstract

The structure of complex networks can be characterized by counting and analyzing network motifs, which are small graph structures that occur repeatedly in a network, such as triangles or chains. Recent work has generalized motifs to temporal and dynamic network data. However, existing techniques do not generalize to sequential or trajectory data, which represents entities walking through the nodes of a network, such as passengers moving through transportation networks. The unit of observation in these data is fundamentally different, since we analyze observations of walks (e.g., a trip from airport A to airport C through airport B), rather than independent observations of edges or snapshots of graphs over time. In this work, we define sequential motifs in trajectory data, which are small, directed, and sequenced-ordered graphs corresponding to patterns in observed sequences. We draw a connection between counting and analysis of sequential motifs and Higher-Order Network (HON) models. We show that by mapping edges of a HON, specifically a kth-order DeBruijn graph, to sequential motifs, we can count and evaluate their importance in observed data, and we test our proposed methodology with two datasets: (1) passengers navigating an airport network and (2) people navigating the Wikipedia article network. We find that the most prevalent and important sequential motifs correspond to intuitive patterns of traversal in the real systems, and show empirically that the heterogeneity of edge weights in an observed higher-order DeBruijn graph has implications for the distributions of sequential motifs we expect to see across our null models.

ArXiv link: https://arxiv.org/abs/2112.05642

Tue, 14 Jun 2022

14:00 - 15:00
C6

TBA

Luc Rocher
(Oxford Internet Institute)
The metric measure boundary of spaces with Ricci curvature bounded below
Bruè, E Mondino, A Semola, D (21 May 2022)
Scaling laws for properties of random graphs that grow via successive combination
Grindrod, P Journal of Complex Networks volume 10 issue 3 (21 Jun 2022)
The universal program of nonlinear hyperelasticity
Yavari, A Goriely, A Journal of Elasticity volume 154 issue 1 91-146 (20 Jul 2022)
Fri, 10 Jun 2022

13:30 - 17:00
Lecture Theatre 5

Groups and Geometry in the South East

(Mathematical Institute)
Further Information

Property (T) and random quotients of hyperbolic groups

1:30

Calum Ashcroft (Cambridge)

In his original manuscript on hyperbolic groups, Gromov asked whether random quotients of non-elementary hyperbolic groups have Property (T). This question was later refined by Ollivier, and then answered in the case of random quotients of free groups by Zuk (and Kotowski--Kotowski).

In this talk we answer the Gromov--Ollivier question in the affirmative. We will discuss random quotients and some of their properties, in particular with relation to Property (T).

Connections between hyperbolic geometry and median geometry

2:45

Cornelia Drutu (Oxford)

In this talk I shall explain how groups endowed with various forms of hyperbolic geometry, from lattices in rank one simple groups to acylindrically hyperbolic groups, present various degrees of compatibility with the median geometry. This is joint work with Indira Chatterji, and with John Mackay.

TEA

3:45

Division, group rings, and negative curvature

4:00

Grigori Avramidi (Bonn)

In 1997 Delzant observed that fundamental groups of hyperbolic manifolds with large injectivity radius have nicely behaved group rings. In particular, these rings have no zero divisors and only the trivial units. In this talk I will explain how to extend this observation to show such rings have a division algorithm (generalizing the division algorithm for group rings of free groups discovered by Cohn) and that these group rings have``freedom theorems’’ showing that all of their ideals that are generated by few elements are free, where the specific value of `few’ depends on the injectivity radius of the manifold (which can be viewed as generalizations from subgroups to ideals of some freedom theorems of Delzant and Gromov). This has geometric consequences to the homotopy classification of 2-complexes with surface fundamental groups and to complexity of cell structures on hyperbolic manifolds.

Hedging Option Books Using Neural-SDE Market Models
Cohen, S Reisinger, C Wang, S (01 Jan 2022)
Subscribe to