Tue, 30 Nov 2021

15:30 - 16:30
Virtual

The Ratios Conjecture over function fields

Alexandra Florea
(UCI)
Abstract

I will talk about some recent joint work with H. Bui and J. Keating where we study the Ratios Conjecture for the family of quadratic L-functions over function fields. I will also discuss the closely related problem of obtaining upper bounds for negative moments of L-functions, which allows us to obtain partial results towards the Ratios Conjecture in the case of one over one, two over two and three over three L-functions. 

Tue, 23 Nov 2021

15:30 - 16:30
L6

Can one hear a real symmetric matrix?

Uzy Smilansky
(Weizmann Institute of Science)
Abstract

The question asked in the title is addressed from two points of view: First, we show that providing enough (term to be explained) spectral data, suffices to reconstruct uniquely generic (term to be explained) matrices. The method is well defined but requires somewhat cumbersome computations. Second, restricting the attention to banded matrices with band-width much smaller than the dimension, one can provide more spectral data than the number of unknown matrix elements. We make use of this redundancy to reconstruct generic banded matrices in a much more straight-forward fashion where the “cumbersome computations” can be skipped over. Explicit criteria for a matrix to be in the non-generic set are provided.

 

Tue, 09 Nov 2021

15:30 - 16:30
L6

Hermitian matrix model with non-trivial covariance and relations to quantum field theory

Alexander Hock
(University of Oxford)
Abstract

Hermitian matrix models with non-trivial covariance will be introduced. The Kontsevich Model is the prime example, which was used to prove Witten's conjecture about the generating function of intersection numbers of the moduli space $\overline{\mathcal{M}}_{g,n}$. However, we will discuss these models in a different direction, namely as a quantum field theory. As a formal matrix model,  the correlation functions of these models have a unique combinatorial/perturbative interpretation in the sense of Feynman diagrams. In particular, the additional structure (in comparison to ordinary quantum field theories) gives the possibility to compute exact expressions, which are resummations of infinitely many Feynman diagrams. For the easiest topologies, these exact expressions (given by implicitly defined functions) will be presented and discussed. If time remains, higher topologies are discussed by a connection to Topological Recursion.

Tue, 02 Nov 2021

15:30 - 16:30
L6

Unitary Invariant Ensembles and Symmetric Function Theory

Bhargavi Jonnadula
(University of Oxford)
Abstract

In this talk, we use tools from representation theory and symmetric function theory to compute correlations of eigenvalues of unitary invariant ensembles. This approach provides a route to write exact formulae for the correlations, which further allows us to extract large matrix asymptotics and study universal properties.

Mon, 25 Oct 2021

12:45 - 13:45
Virtual

Random Matrix Theory for the Black Hole Interior

Mark Mezei
(Simons Center for Geometry and Physics)
Further Information

NOTE UNUSUAL DAY AND TIME: Monday/12:45pm

Abstract

In recent years a fruitful interplay has been unfolding between quantum chaos and black holes. In the first part of the talk, I provide a sampler of these developments. Next, we study the fate of the black hole interior at late times in simple models of quantum gravity that have dual descriptions in terms of Random Matrix Theory. We find that the volume of the interior grows linearly at early times and then, due to non-perturbative effects, saturates at a time and towards a value that are exponentially large in the entropy of the black hole. This provides a confirmation of the complexity equals volume proposal of Susskind, since in chaotic systems complexity is also expected to exhibit the same behavior.

Tue, 19 Oct 2021

15:30 - 16:30
L6

TBA

Philip Cohen
(University of Oxford)
Further Information

POSTPONED TO A LATER DATE

Abstract

TBA

Fri, 05 Nov 2021

15:30 - 16:30
C6

Short talks from Algebra PhDs

Algebra DPhil students
(University of Oxford)
Further Information

A collection of bite-size 10-15 minute talks from current DPhil students in the Algebra group. The talks will be accessible to masters students and above.

With plenty of opportunity to chat to current students about what doing a PhD in algebra and representation theory is like!

Tue, 16 Nov 2021
14:00
L3

Homology torsion growth in finitely presented pro-p groups

Nikolay Nikolov
(Oxford University)
Abstract

Let $G$ be a finitely presented residually finite group. We are interested in the growth of size of the torsion of $H^{ab}$ as a function of $|G:H|$ where $H$ ranges over normal subgroups of finite index in $G$. It is easy to see that this grows at most exponentially in terms of $|G:H|$. Of particular interest is the case when $G$ is an arithmetic hyperbolic 3-manifold group and $H$ ranges over its congruence subgroups. Proving exponential lower bounds on the torsion appears to be difficult and in this talk I will focus on the situation of finitely presented pro-$p$ groups.

In contrast with abstract groups I will show that in finitely presented pro-$p$ groups torsion in the abelianizations can grow arbitrarily fast. The examples are rather 'large' pro-$p$ groups, in particular they are virtually Golod-Shafarevich. When we restrict to $p$-adic analytic groups the torsion growth is at most polynomial.

Collective oscillations of globally coupled bistable, nonresonant components
Salman, M Bick, C Krischer, K Physical Review Research volume 2 issue 4 043125 (01 Oct 2020)
Mon, 08 Nov 2021

16:00 - 17:00
C1

TBA

George Robinson
(Oxford)
Abstract

The Jacquet-Langlands correspondence gives a relationship between automorphic representations on $GL_2$ and its twisted forms, which are the unit groups of quaternion algebras. Writing this out in more classical language gives a combinatorial way of producing the eigenvalues of Hecke operators acting on modular forms. In this talk, we will first go over notions of modular forms and quaternion algebras, and then dive into an explicit example by computing some eigenvalues of the lowest level quaternionic modular form of weight $2$ over $\mathbb{Q}$.

Subscribe to