17:30
Convexity and Uniqueness in the Calculus of Variations
Please note there are two pde seminars on Monday of W2 (May 1st).
Please note there are two pde seminars on Monday of W2 (May 1st).
Please note there are two pde seminars on Monday of W2 (May 1st).
In his pioneering work in 1860, Riemann proposed the Riemann problem and solved it for isentropic gas in terms of shocks and rarefaction waves. It eventually became the foundation of the theory of one-dimension conservation laws developed in the 20th century. We prove the non-nonlinear structural stability of the Riemann problem for multi-dimensional isentropic Euler equations in the regime of rarefaction waves. This is a joint work with Tian-Wen Luo.
Please note a different room and that there are two pde seminars on Monday of W5 (May 22).
Optimal transport (OT) has recently gained a lot of interest in machine learning. It is a natural tool to compare in a geometrically faithful way probability distributions. It finds applications in both supervised learning (using geometric loss functions) and unsupervised learning (to perform generative model fitting). OT is however plagued by the curse of dimensionality, since it might require a number of samples which grows exponentially with the dimension. In this talk, I will explain how to leverage entropic regularization methods to define computationally efficient loss functions, approximating OT with a better sample complexity. More information and references can be found on the website of our book "Computational Optimal Transport".
In work of Haiden-Katzarkov-Konsevich-Pandit (HKKP), a canonical filtration, labeled by sequences of real numbers, of a semistable quiver representation or vector bundle on a curve is defined. The HKKP filtration is a purely algebraic object that depends only on a lattice, yet it governs the asymptotic behaviour of a natural gradient flow in the space of metrics of the object. In this talk, we show that the HKKP filtration can be recovered from the stack of semistable objects and a so called norm on graded points, thereby generalising the HKKP filtration to other moduli problems of non-linear origin.
The Oxford Maths Festival (organised by Oxford Mathematics) is an extravaganza of all the wonderful curiosities mathematics holds. Over two days you can immerse yourself in a wide range of events, with something for everyone, no matter your age or prior mathematical experience.
Asymptotic dimension was introduced by Gromov as an invariant of finitely generated groups. It can be shown that if two metric spaces are quasi-isometric then they have the same asymptotic dimension. In 1998, the asymptotic dimension achieved particular prominence in geometric group theory after a paper of Guoliang Yu, which proved the Novikov conjecture for groups with finite asymptotic dimension. Unfortunately, not all finitely generated groups have finite asymptotic dimension.
In this talk, we will introduce some basic tools to compute the asymptotic dimension of groups. We will also find upper bounds for the asymptotic dimension of a few well-known classes of finitely generated groups, such as hyperbolic groups, and if time permits, we will see why one-relator groups have asymptotic dimension at most two.