Wed, 04 Nov 2020

16:00 - 17:30

On wide Aronszajn trees

Mirna Džamonja
(CNRS & Université Panthéon Sorbonne and Czech Academy of Sciences)
Abstract

Aronszajn trees are a staple of set theory, but there are applications where the requirement of all levels being countable is of no importance. This is the case in set-theoretic model theory, where trees of height and size ω1 but with no uncountable branches play an important role by being clocks of Ehrenfeucht–Fraïssé games that measure similarity of model of size ℵ1. We call such trees wide Aronszajn. In this context one can also compare trees T and T’ by saying that T weakly embeds into T’ if there is a function f that map T into T’ while preserving the strict order <_T. This order translates into the comparison of winning strategies for the isomorphism player, where any winning strategy for T’ translates into a winning strategy for T’. Hence it is natural to ask if there is a largest such tree, or as we would say, a universal tree for the class of wood Aronszajn trees with weak embeddings. It was known that there is no such a tree under CH, but in 1994 Mekler and Väänanen conjectured that there would be under MA(ω1).

In our upcoming JSL  paper with Saharon Shelah we prove that this is not the case: under MA(ω1) there is no universal wide Aronszajn tree.

The talk will discuss that paper. The paper is available on the arxiv and on line at JSL in the preproof version doi: 10.1017/jsl.2020.42.

Wed, 21 Oct 2020

16:00 - 17:30

Ultrafilters on omega versus forcing

Andreas Blass
(University of Michigan)
Abstract

I plan to survey known facts and open questions about ultrafilters on omega generating (or not generating) ultrafilters in forcing extensions.

Tue, 17 Nov 2020
14:00
Virtual

Full operator preconditioning and accuracy of solving linear systems

Stephan Mohr
(Mathematical Institute)
Abstract

Preconditioning techniques are widely used for speeding up the iterative solution of systems of linear equations, often by transforming the system into one with lower condition number. Even though the condition number also serves as the determining constant in simple bounds for the numerical error of the solution, simple experiments and bounds show that such preconditioning on the matrix level is not guaranteed to reduce this error. Transformations on the operator level, on the other hand, improve both accuracy and speed of iterative methods as predicted by the change of the condition number. We propose to investigate such methods under a common framework, which we call full operator preconditioning, and show practical examples.

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please send an email to @email.

Tue, 24 Nov 2020
15:30
Virtual

Sparse universal graphs for planarity

Gwenaël Joret
(Universite Libre de Bruxelles)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

This talk will focus on the following two related problems:
    (1) What is the minimum number of edges in a graph containing all $n$-vertex planar graphs as subgraphs? A simple construction of Babai, Erdos, Chung, Graham, and Spencer (1982) has $O(n^{3/2})$ edges, which is the best known upper bound.
    (2) What is the minimum number of *vertices* in a graph containing all $n$-vertex planar graphs as *induced* subgraphs? Here steady progress has been achieved over the years, culminating in a $O(n^{4/3})$ bound due to Bonamy, Gavoille, and Pilipczuk (2019).
    As it turns out, a bound of $n^{1+o(1)}$ can be achieved for each of these two problems. The two constructions are somewhat different but are based on a common technique. In this talk I will first give a gentle introduction to the area and then sketch these constructions. The talk is based on joint works with Vida Dujmović, Louis Esperet, Cyril Gavoille, Piotr Micek, and Pat Morin.

Tue, 24 Nov 2020
14:00
Virtual

Matching Random Points

Alexander Holroyd
(Bristol)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

What is fairness, and to what extent is it practically achievable? I'll talk about a simple mathematical model under which one might hope to understand such questions. Red and blue points occur as independent homogeneous Poisson processes of equal intensity in Euclidean space, and we try to match them to each other. We would like to minimize the sum of a some function (say, a power, $\gamma$) of the distances between matched pairs. This does not make sense, because the sum is infinite, so instead we satisfy ourselves with minimizing *locally*. If the points are interpreted as agents who would like to be matched as close as possible, the parameter $\gamma$ encodes a measure of fairness - large $\gamma$ means that we try to avoid occasional very bad outcomes (long edges), even if that means inconvenience to others - small $\gamma$ means everyone is in it for themselves.
    In dimension 1 we have a reasonably complete picture, with a phase transition at $\gamma=1$. For $\gamma<1$ there is a unique minimal matching, while for $\gamma>1$ there are multiple matchings but no stationary solution. In higher dimensions, even existence is not clear in all cases.

Tue, 17 Nov 2020
15:30
Virtual

Random Steiner complexes and simplical spanning trees

Ron Rosenthal
(Technion)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

A spanning tree of $G$ is a subgraph of $G$ with the same vertex set as $G$ that is a tree. In 1981, McKay proved an asymptotic result regarding the number of spanning trees in random $k$-regular graphs, showing that the number of spanning trees $\kappa_1(G_n)$ in a random $k$-regular graph on $n$ vertices satisfies $\lim_{n \to \infty} (\kappa_1(G_n))^{1/n} = c_{1,k}$ in probability, where $c_{1,k} = (k-1)^{k-1} (k^2-2k)^{-(k-2)/2}$.

In this talk we will discuss a high-dimensional of the matching model for simplicial complexes, known as random Steiner complexes. In particular, we will prove a high-dimensional counterpart of McKay's result and discuss the local limit of such random complexes. 
Based on a joint work with Lior Tenenbaum. 

Tue, 17 Nov 2020
14:00
Virtual

Minimum weight disk triangulations and fillings

Yuval Peled
(Courant)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We study the minimum total weight of a disk triangulation using any number of vertices out of $\{1,..,n\}$ where the boundary is fixed and the $n \choose 3$ triangles have independent rate-1 exponential weights. We show that, with high probability, the minimum weight is equal to $(c+o(1))n-1/2\log n$ for an explicit constant $c$. Further, we prove that, with high probability, the minimum weights of a homological filling and a homotopical filling of the cycle $(123)$ are both attained by the minimum weight disk triangulation. We will discuss a related open problem concerning simple-connectivity of random simplicial complexes, where a similar phenomenon is conjectured to hold. Based on joint works with Itai Benjamini, Eyal Lubetzky, and Zur Luria.

Tue, 10 Nov 2020
15:30
Virtual

Power-law bounds for critical long-range percolation

Tom Hutchcroft
(Cambridge)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In long-range percolation on $\mathbb{Z}^d$, each potential edge $\{x,y\}$ is included independently at random with probability roughly $\beta\|x-y\|-d-\alpha$, where $\alpha > 0$ controls how long-range the model is and $\beta > 0$ is an intensity parameter. The smaller $\alpha$ is, the easier it is for very long edges to appear. We are normally interested in fixing $\alpha$ and studying the phase transition that occurs as $\beta$ is increased and an infinite cluster emerges. Perhaps surprisingly, the phase transition for long-range percolation is much better understood than that of nearest neighbour percolation, at least when $\alpha$ is small: It is a theorem of Noam Berger that if $\alpha < d$ then the phase transition is continuous, meaning that there are no infinite clusters at the critical value of $\beta$. (Proving the analogous result for nearest neighbour percolation is a notorious open problem!) In my talk I will describe a new, quantitative proof of Berger's theorem that yields power-law upper bounds on the distribution of the cluster of the origin at criticality.
    As a part of this proof, I will describe a new universal inequality stating that on any graph, the maximum size of a percolation cluster is of the same order as its median with high probability. This inequality can also be used to give streamlined new proofs of various classical results on e.g. Erdős-Rényi random graphs, which I will hopefully have time to talk a little bit about also.

Tue, 10 Nov 2020
14:00
Virtual

Critical behavior without FKG

Vincent Beffara
(Grenoble)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will present work in progress with D. Gayet and F. Pouran (Grenoble) to establish Russo-Seymour-Welsh (RSW) estimates for 2d statistical mechanics models that do not satisfy the FKG inequality. RSW states that critical percolation has no characteristic length, in the sense that large rectangles are crossed by an open path with a probability that is bounded below by a function of their shape, but uniformly in their size; this ensures the polynomial decay of many relevant quantities and opens the way to deeper understanding of the critical features of the model. All the standard proofs of RSW rely on the FKG inequality, i.e. on the positive correlation between increasing events; we establish the stability of RSW under small perturbations that do not preserve FKG, which extends it for instance to the high-temperature anti-ferromagnetic Ising model.

Subscribe to