Tue, 24 Nov 2020

15:30 - 16:30
Virtual

Asymptotics for averages over classical orthogonal ensembles

Tom Claeys
(Universite catholique de louvain)
Further Information

This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

Averages of multiplicative eigenvalue statistics of Haar distributed unitary matrices are Toeplitz determinants, and asymptotics for these determinants are now well understood for large classes of symbols, including symbols with gaps and (merging) Fisher-Hartwig singularities. Similar averages for Haar distributed orthogonal matrices are Toeplitz+Hankel determinants. Some asymptotic results for these determinants are known, but not in the same generality as for Toeplitz determinants. I will explain how one can systematically deduce asymptotics for averages in the orthogonal group from those in the unitary group, using a transformation formula and asymptotics for certain orthogonal polynomials on the unit circle, and I will show that this procedure leads to asymptotic results for symbols with gaps or (merging) Fisher-Hartwig singularities. The talk will be based on joint work with Gabriel Glesner, Alexander Minakov and Meng Yang.

Tue, 03 Nov 2020

15:30 - 16:30
Virtual

A threefold way to integrable probabilistic models

Thomas Bothner
(University of Bristol)
Further Information

This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

This talk is intended for a broad math and physics audience in particular including students. It will focus on the speaker’s recent contributions to the analysis of the real Ginibre ensemble consisting of square real matrices whose entries are i.i.d. standard normal random variables. In sharp contrast to the complex and quaternion Ginibre ensemble, real eigenvalues in the real Ginibre ensemble attain positive likelihood. In turn, the spectral radius of a real Ginibre matrix follows a different limiting law for purely real eigenvalues than for non-real ones. We will show that the limiting distribution of the largest real eigenvalue admits a closed form expression in terms of a distinguished solution to an inverse scattering problem for the Zakharov-Shabat system. This system is directly related to several of the most interesting nonlinear evolution equations in 1 + 1 dimensions which are solvable by the inverse scattering method. The results of this talk are based on our joint work with Jinho Baik (arXiv:1808.02419 and arXiv:2008.01694)

Tue, 20 Oct 2020

15:30 - 16:30

Comparing counting functions for determinantal point processes

Mark Meckes
(Case Western Reserve University)
Further Information

This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

 

I will describe a general method for comparing the counting functions of determinantal point processes in terms of trace class norm distances between their kernels (and review what all of those words mean). Then I will outline joint work with Elizabeth Meckes using this method to prove a version of a self-similarity property of eigenvalues of Haar-distributed unitary matrices conjectured by Coram and Diaconis.  Finally, I will discuss ongoing work by my PhD student Kyle Taljan, bounding the rate of convergence for counting functions of GUE eigenvalues to the Sine or Airy process counting functions.

 

 

 

Tue, 13 Oct 2020

15:30 - 16:30

Random Matrices with Prescribed Eigenvalues

Elizabeth Meckes
(Case Western Reserve University)
Further Information

This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

Classical random matrix theory begins with a random matrix model and analyzes the distribution of the resulting eigenvalues.  In this work, we treat the reverse question: if the eigenvalues are specified but the matrix is "otherwise random", what do the entries typically look like?  I will describe a natural model of random matrices with prescribed eigenvalues and discuss a central limit theorem for projections, which in particular shows that relatively large subcollections of entries are jointly Gaussian, no matter what the eigenvalue distribution looks like.  I will discuss various applications and interpretations of this result, in particular to a probabilistic version of the Schur--Horn theorem and to models of quantum systems in random states.  This work is joint with Mark Meckes.

Tue, 24 Nov 2020
12:00
Virtual

Symmetries and Master Ward Identity in perturbative Algebraic QFT

Kasia Reijzner
(University of York)
Abstract

In this talk I will explain how theories with local symmetries are treated in perturbative Algebraic Quantum Field Theory (pAQFT). The main mathematical tool used here is the Batalin Vilkovisky (BV) formalism. I will show how the perturbative Master Ward Identity can be applied in this formalism to make sense of the renormalised Quantum Master Equation. I will also comment on perspectives for a non-perturbative formulation.

 

Tue, 10 Nov 2020
12:00
Virtual

Conformal Field Theory through Subfactors and K-theory

Dai Evans
(Cardiff University)
Abstract

Subfactors and K-theory are useful mechanisms for understanding modular tensor categories and conformal field theories. As part of this programme, one issue to try and construct or reconstruct a conformal field theory as the representation theory of a conformal net of algebras, or as a vertex operator algebra from a given abstractly presented modular tensor category. Orbifold models play an important role and orbifolds of Tambara-Yamagami systems are relevant to understanding the double of the Haagerup as a conformal field theory. This is joint work with Andreas Aaserud, Terry Gannon and Ulrich Pennig.

Thu, 19 Nov 2020
14:00
Virtual

A foundation for automated high performance scientific machine learning

Chris Rackauckas
(MIT)
Abstract

Scientific machine learning is a burgeoning discipline for mixing machine learning into scientific simulation. Use cases of this field include automated discovery of physical equations and accelerating physical simulators. However, making the analyses of this field automated will require building a set of tools that handle stiff and ill-conditioned models without requiring user tuning. The purpose of this talk is to demonstrate how the methods and tools of scientific machine learning can be consolidated to give a single high performance and robust software stack. We will start by describing universal differential equations, a flexible mathematical object which is able to represent methodologies for equation discovery, 100-dimensional differential equation solvers, and discretizations of physics-informed neural networks. Then we will showcase how adjoint sensitivity analysis on the universal differential equation solving process gives rise to efficient and stiffly robust training methodologies for a large variety of scientific machine learning problems. With this understanding of differentiable programming we will describe how the Julia SciML Software Organization is utilizing this foundation to provide high performance tools for deploying battery powered airplanes, improving the energy efficiency of buildings, allow for navigation via the Earth's magnetic field, and more.

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please send email to @email.

Thu, 12 Nov 2020
14:00
Virtual

High order Whitney forms on simplices

Francesca Rapetti
(University of Nice Sophia-Antipolis)
Abstract

Whitney elements on simplices are perhaps the most widely used finite elements in computational electromagnetics. They offer the simplest construction of polynomial discrete differential forms on simplicial complexes. Their associated degrees of freedom (dofs) have a very clear physical meaning and give a recipe for discretizing physical balance laws, e.g., Maxwell’s equations. As interest grew for the use of high order schemes, such as hp-finite element or spectral element methods, higher-order extensions of Whitney forms have become an important computational tool, appreciated for their better convergence and accuracy properties. However, it has remained unclear what kind of cochains such elements should be associated with: Can the corresponding dofs be assigned to precise geometrical elements of the mesh, just as, for instance, a degree of freedom for the space of Whitney 1-forms belongs to a specific edge? We address this localization issue. Why is this an issue? The existing constructions of high order extensions of Whitney elements follow the traditional FEM path of using higher and higher “moments” to define the needed dofs. As a result, such high order finite k-elements in d dimensions include dofs associated to q-simplices, with k < q ≤ d, whose physical interpretation is obscure. The present paper offers an approach based on the so-called “small simplices”, a set of subsimplices obtained by homothetic contractions of the original mesh simplices, centered at mesh nodes (or more generally, when going up in degree, at points of the principal lattice of each original simplex). Degrees of freedom of the high-order Whitney k-forms are then associated with small simplices of dimension k only.  We provide an explicit  basis for these elements on simplices and we justify this approach from a geometric point of view (in the spirit of Hassler Whitney's approach, still successful 30 years after his death).   

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please send email to @email.

Subscribe to