Mon, 01 Jun 2020
14:15
Virtual

Homological mirror symmetry for log Calabi-Yau surfaces

Ailsa Keating
(Cambridge)
Abstract

Given a log Calabi-Yau surface Y with maximal boundary D, I'll explain how to construct a mirror Landau-Ginzburg model, and sketch a proof of homological mirror symmetry for these pairs when (Y,D) is distinguished within its deformation class (this is mirror to an exact manifold). I'll explain how to relate this to the total space of the SYZ fibration predicted by Gross--Hacking--Keel, and, time permitting, explain ties with earlier work of Auroux--Katzarkov--Orlov and Abouzaid. Joint work with Paul Hacking.

Thu, 18 Jun 2020

16:00 - 16:45
Virtual

OCIAM learns ... about wrinkling.

Professor Dominic Vella
(Mathematical Institute)
Further Information

This term's IAM seminar, a bi-weekly series entitled, 'OCIAM learns about ...' will involve internal speakers giving a general introduction to a topic on which they are experts.

Join the seminar in Zoom

https://zoom.us/j/91733296449?pwd=c29vMDluR0RCRHJia2JEcW1LUVZjUT09 
 Meeting ID: 917 3329 6449Password: 329856One 

Abstract


This week Professor Dominic Vella will talk about wrinkling  

In this talk I will provide an overview of recent work on the wrinkling of thin elastic objects. In particular, the focus of the talk will be on answering questions that arise in recent applications that seek not to avoid, but rather, exploit wrinkling. Such applications usually take place far beyond the threshold of instability and so key themes will be the limitations of “standard” instability analysis, as well as what analysis should be performed instead. I will discuss the essential ingredients of this ‘Far-from-Threshold’ analysis, as well as outlining some open questions.  

Thu, 04 Jun 2020

16:00 - 16:45

OCIAM learns...about modelling ice sheets

Professor Ian Hewitt
(Mathematical Institute)
Further Information

A new bi-weekly seminar series, 'OCIAM learns ..."

Internal speakers give a general introduction to a topic on which they are experts.

Abstract

Abstract

This talk will provide an overview of mathematical modelling applied to the behaviour of ice sheets and their role in the climate system.  I’ll provide some motivation and background, describe simple approaches to modelling the evolution of the ice sheets as a fluid-flow problem, and discuss some particular aspects of the problem that are active areas of current research.  The talk will involve a variety of interesting continuum-mechanical models and approximations that have analogues in other areas of applied mathematics.


You can join the meeting by clicking on the link below.
Join Zoom Meeting
https://zoom.us/j/91733296449?pwd=c29vMDluR0RCRHJia2JEcW1LUVZjUT09
Meeting ID: 917 3329 6449
Password: 329856

Subscribe to