Thu, 24 Jan 2019

13:00 - 14:00
L4

Talks by Dphil students

Tanut Treetanthiploet and Julien Vaes (Dphil students)
Abstract

Tanut Treetanthiploet
---------------------
Exploration vs Exploitation under Statistical Uncertainty

The exploration vs Exploitation trade-off can be quantified and studied through the notion of statistical uncertainty using the theory of nonlinear expectations. The dynamic allocation problem of multi-armed bandits will be discussed. In the case of a finite state space in discrete time, we can describe the value function in terms of the solution to a discrete BSDE and obtain a similar notion to the Bellman equation. We also give an approximation scheme to evaluate decisions in the simple setting.


Julien Vaes
-----------
Optimal Execution Strategy Under Price and Volume Uncertainty

In the seminal paper on optimal execution of portfolio transactions, Almgren and Chriss define the optimal trading strategy to liquidate a fixed volume of a single security under price uncertainty. Yet there exist situations, such as in the power market, in which the volume to be traded can only be estimated and becomes more accurate when approaching a specified delivery time. To meet the need of efficient strategies in these situations, we have developed  a model that accounts for volume uncertainty and show that a risk-averse trader has benefit in delaying their trades. We show that the optimal strategy is a trade-off between early and late trades to balance risk associated to both price and volume. With the incorporation of a risk term for the volume to trade, the static optimal strategies obtained with our model avoid the explosion in the algorithmic complexity associated to dynamic programming solutions while yielding to competitive performance.

 

Thu, 07 Mar 2019

16:00 - 17:30
L4

Strategic Fire-Sales and Price-Mediated Contagion in the Banking System

Dr Lakshithe Wagalath
(IESEG France)
Further Information

 

 
Abstract

We consider a price-mediated contagion framework in which each bank, after an exogenous shock, may have to sell assets in order to comply with regulatory constraints. Interaction between banks takes place only through price impact. We characterize the equilibrium of the strategic deleveraging problem and we calibrate our model to publicly-available data, the US banks that were part of the 2015 regulatory stress-tests. We then consider a more sophisticated model in which each bank is exposed to two risky assets (marketable and not marketable) and is only able to sell the marketable asset. We calibrate our model using the six banks with significant trading operations and we show that, depending on the price impact, the contagion of failures may be significant. Our results may be used to refine current stress testing frameworks by incorporating potential contagion mechanisms between banks. This is joint work with Yann Braouezec.

 
Thu, 28 Feb 2019

16:00 - 17:30
L4

Mean-Field Games with Differing Beliefs for Algorithmic Trading

Sebastian Jaimungal
(University of Toronto)
Abstract

Even when confronted with the same data, agents often disagree on a model of the real-world. Here, we address the question of how interacting heterogenous agents, who disagree on what model the real-world follows, optimize their trading actions. The market has latent factors that drive prices, and agents account for the permanent impact they have on prices. This leads to a large stochastic game, where each agents' performance criteria is computed under a different probability measure. We analyse the mean-field game (MFG) limit of the stochastic game and show that the Nash equilibria is given by the solution to a non-standard vector-valued forward-backward stochastic differential equation. Under some mild assumptions, we construct the solution in terms of expectations of the filtered states. We prove the MFG strategy forms an \epsilon-Nash equilibrium for the finite player game. Lastly, we present a least-squares Monte Carlo based algorithm for computing the optimal control and illustrate the results through simulation in market where agents disagree on the model.
[ joint work with Philippe Casgrain, U. Toronto ]
 

Thu, 21 Feb 2019

16:00 - 17:30
L4

Zero-sum stopping games with asymmetric information

Jan Palczewski
(Leeds University)
Abstract

We study the value of a zero-sum stopping game in which the terminal payoff function depends on the underlying process and on an additional randomness (with finitely many states) which is known to one player but unknown to the other. Such asymmetry of information arises naturally in insider trading when one of the counterparties knows an announcement before it is publicly released, e.g., central bank's interest rates decision or company earnings/business plans. In the context of game options this splits the pricing problem into the phase before announcement (asymmetric information) and after announcement (full information); the value of the latter exists and forms the terminal payoff of the asymmetric phase.

The above game does not have a value if both players use pure stopping times as the informed player's actions would reveal too much of his excess knowledge. The informed player manages the trade-off between releasing information and stopping optimally employing randomised stopping times. We reformulate the stopping game as a zero-sum game between a stopper (the uninformed player) and a singular controller (the informed player). We prove existence of the value of the latter game for a large class of underlying strong Markov processes including multi-variate diffusions and Feller processes. The main tools are approximations by smooth singular controls and by discrete-time games.

Thu, 14 Feb 2019

16:00 - 17:30
L4

Static vs Adaptive Strategies for Optimal Execution with Signals

Eyal Neumann
(Imperial College London)
Further Information

We consider an optimal execution problem in which a trader is looking at a short-term price predictive signal while trading. In the case where the trader is creating an instantaneous market impact, we show that transactions costs resulting from the optimal adaptive strategy are substantially lower than the corresponding costs of the optimal static strategy. Later, we investigate the case where the trader is creating transient market impact. We show that strategies in which the trader is observing the signal a number of times during the trading period, can dramatically reduce the transaction costs and improve the performance of the optimal static strategy. These results answer a question which was raised by Brigo and Piat [1], by analyzing two cases where adaptive strategies can improve the performance of the execution. This is joint work with Claudio Bellani, Damiano Brigo and Alex Done.

Thu, 31 Jan 2019

16:00 - 17:30
L4

Machine learning for volatility

Dr Martin Tegner
(Department of Engineering and Oxford Man Institute)
Further Information

The main focus of this talk will be a nonparametric approach for local volatility. We look at the calibration problem in a probabilistic framework based on Gaussian process priors. This gives a way of encoding prior believes about the local volatility function and a model which is flexible yet not prone to overfitting. Besides providing a method for calibrating a (range of) point-estimate(s), we draw posterior inference from the distribution over local volatility. This leads to a principled understanding of uncertainty attached with the calibration. Further, we seek to infer dynamical properties of local volatility by augmenting the input space with a time dimension. Ideally, this provides predictive distributions not only locally, but also for entire surfaces forward in time. We apply our approach to S&P 500 market data.

 

In the final part of the talk we will give a short account of a nonparametric approach to modelling realised volatility. Again we take a probabilistic view and formulate a hypothesis space of stationary processes for volatility based on Gaussian processes. We demonstrate on the S&P 500 index.

Thu, 24 Jan 2019

16:00 - 17:30
L4

Contagion and Systemic Risk in Heterogeneous Financial Networks

Dr Thilo Meyer-Brandis
(University of Munich)
Abstract

 One of the most defining features of modern financial networks is their inherent complex and intertwined structure. In particular the often observed core-periphery structure plays a prominent role. Here we study and quantify the impact that the complexity of networks has on contagion effects and system stability, and our focus is on the channel of default contagion that describes the spread of initial distress via direct balance sheet exposures. We present a general approach describing the financial network by a random graph, where we distinguish vertices (institutions) of different types - for example core/periphery - and let edge probabilities and weights (exposures) depend on the types of both the receiving and the sending vertex. Our main result allows to compute explicitly the systemic damage caused by some initial local shock event, and we derive a complete characterization of resilient respectively non-resilient financial systems in terms of their global statistical characteristics. Due to the random graphs approach these results bear a considerable robustness to local uncertainties and small changes of the network structure over time. Applications of our theory demonstrate that indeed the features captured by our model can have significant impact on system stability; we derive resilience conditions for the global network based on subnetwork conditions only. 

Thu, 17 Jan 2019

16:00 - 17:30
L4

When does portfolio compression reduce systemic risk?

Dr Luitgard Veraart
(London School of Economics)
Abstract

We analyse the consequences of conservative portfolio compression, i.e., netting cycles in financial networks, on systemic risk.  We show that the recovery rate in case of default plays a significant role in determining whether portfolio compression is potentially beneficial.  If recovery rates of defaulting nodes are zero then compression weakly reduces systemic risk. We also provide a necessary condition under which compression strongly reduces systemic risk.  If recovery rates are positive we show that whether compression is potentially beneficial or harmful for individual institutions does not just depend on the network itself but on quantities outside the network as well. In particular we show that  portfolio compression can have negative effects both for institutions that are part of the compression cycle and for those that are not. Furthermore, we show that while a given conservative compression might be beneficial for some shocks it might be detrimental for others. In particular, the distribution of the shock over the network matters and not just its size.  

Tue, 05 Feb 2019
14:15
L4

Towards a generic representation theory

David Craven
(Birmingham)
Abstract

In combinatorics, the 'nicest' way to prove that two sets have the same size is to find a bijection between them, giving more structure to the seeming numerical coincidences. In representation theory, many of the outstanding conjectures seem to imply that the characteristic p of the ground field can be allowed to vary, and we can relate different groups and different primes, to say that they have 'the same' representation theory. In this talk I will try to make precise what we could mean by this

Subscribe to