Mon, 18 Feb 2019

17:00 - 18:00
L5

A Beautiful Game from the War: Piet Hein, John Nash, Martin Gardner and Hex

Ryan Hayward
(University of Alberta)
Abstract

Seeking income during World War II, Piet Hein created the game now called Hex, marketing it through the Danish newspaper Politiken.  The game was popular but disappeared in 1943 when Hein fled Denmark.

The game re-appeared in 1948 when John Nash introduced it to Princeton's game theory group, and became popular again in 1957 after Martin Gardner's column --- "Concerning the game of Hex, which may be played on the tiles of the bathroom floor" --- appeared in Scientific American.

I will survey the early history of Hex, highlighting the war's influence on Hein's design and marketing, Hein's mysterious puzzle-maker, and Nash's fascination with Hex's theoretical properties.

Tue, 22 Jan 2019
15:00
C1

Cluster Adjacency

Dr Omer Gurdogan
(Southampton)
Abstract

Cluster Adjacency is a geometric principle which defines a subclass of multiple polylogarithms with analytic properties compatible with that of scattering amplitudes and Feynman loop integrals. We use this principle to a priori remove the redundances in the perturbative bootstrap approach and efficiently compute the four-loop NMHV heptagon. Moreover, cluster adjacency is naturally applied to the space of $A_n$ polylogarithms and generates numerous structures therein to be explored further.

Tue, 22 Jan 2019
12:00
L4

The fishnet model: an integrable scalar CFT in four dimensions

Dr Omer Gurdogan
(Southampton)
Abstract

I will review the fishnet model, which is an integrable scalar QFT, obtained by an extreme gamma deformation of N=4 super Yang-Mills. The theory has a peculiar perturbative expansion in which many quantities at a fixed loop order are given by a single Feynman diagram. This feature allows the reinterpretation of Feynman loop integrals as integrable systems.

For the first time, on February 14th at 10am Oxford Mathematics will be LIVE STREAMING a 1st Year undergraduate lecture. In addition we will film (not live) a real tutorial based on that lecture.

After the huge success of making an undergraduate lecture widely available via social media last term, we know there is an appetite to better understand Oxford teaching. In turn we want to demystify what we do, showing that it is both familiar but also distinctive.

Wed, 06 Mar 2019
16:00
C2

"Large continua via ultracoproducts"

Paul Bankston
(Milwaukee and Aberystwyth)
Abstract

It is known that every continuum X is a weakly confluent image of a continuum Y which is hereditarily indecomposable and of covering dimension one.  We use the ultracoproduct construction to gain information about the number of composants of Y.  For example, in ZFC, we can ensure that this number is arbitrarily large.  And if we assume the GCH, we can arrange for Y to have as many composants at it has points.

Wed, 20 Feb 2019
16:00
C2

‘Expansivity and shadowing’

Chris Good
(Birmingham)
Abstract

Abstract:   Let $f$ be a continuous surjection from the compact metric space $X$ to itself. 

 

We say that the dynamical system $(X,f)$ has shadowing if for every $\epsilon>0$ there is a $\delta>0$ such that every $\delta$-pseudo orbit is $\epsilon$-shadowed.  Here a sequence $(x_n)$ is a $\delta$-pseudo orbit provided the distance from $f(x_n)$ to $x_{n+1}$ is less than $\delta$ and $(x_n)$ is $\epsilon$-shadowed if there is a point $z$ such that the distance from $x_n$ to $f^n(z)$ is less than $\epsilon$.  

 

If $f$ is a homeomorphism, $(X,f)$ is said to be expansive if there is some $c>0$, such that if the distance from $f^n(x)$ and $f^n(y)$ is less than $c$ for all $n\in \mathbb Z$, then $x=y$.

 

In his proof that a homeomorphism that is expansive and has shadowing is stable, Walters shows that in an expansive system with shadowing, a pseudo orbit is shadowed by exactly one point.  It turns out that the converse is also true: if the system has unique shadowing (in the above sense), then it is expansive.

 

In this talk, which is joint work with Joel Mitchell and Joe Thomas, we explore this notion of unique shadowing.

Wed, 16 Jan 2019
16:00
C2

Ramsey Theory and Infinite Graphs

Natasha Dobrinen
(Denver)
Abstract

Abstract:  It is a central question in the theory of infinite relational structures as to which structures carry analogues of Ramsey’s Theorem.  This question, of interest for several decades, has gained recent momentum as it was brought into focus by Kechris, Pestov, and Todorcevic, when they proved a deep correspondence between Ramsey theory and topological dynamics.  

 

In this talk, we provide background on the Ramsey theory of the Rado graph, solved by Sauer.  A longstanding open question was whether Henson graphs, the k-clique-free analogues of the Rado graph, have similar features.  We present the speaker’s recent work solving the Ramsey theory of the Henson graphs.  The techniques developed open new lines of investigation for other relational structures with forbidden configurations.  As a byproduct of these methods, we may obtain Ramsey properties for Borel colorings on copies of the Rado graph, with respect to a certain topology.

Wed, 16 Jan 2019
16:00
C2

Ramsey Theory and Infinite Graphs

Natasha Dobrinen
(Denver)
Abstract

Abstract:  It is a central question in the theory of infinite relational structures as to which structures carry analogues of Ramsey’s Theorem.  This question, of interest for several decades, has gained recent momentum as it was brought into focus by Kechris, Pestov, and Todorcevic, when they proved a deep correspondence between Ramsey theory and topological dynamics.  

 

In this talk, we provide background on the Ramsey theory of the Rado graph, solved by Sauer.  A longstanding open question was whether Henson graphs, the k-clique-free analogues of the Rado graph, have similar features.  We present the speaker’s recent work solving the Ramsey theory of the Henson graphs.  The techniques developed open new lines of investigation for other relational structures with forbidden configurations.  As a byproduct of these methods, we may obtain Ramsey properties for Borel colorings on copies of the Rado graph, with respect to a certain topology.

Thu, 17 Jan 2019

12:00 - 13:00
L4

The role of a strong confining potential in a nonlinear Fokker-Planck equation

Luca Alasio
(Gran Sasso Science Institute GSSI)
Abstract

In this talk I will illustrate how solutions of nonlinear nonlocal Fokker-Planck equations in a bounded domain with no-flux boundary conditions can be approximated by Cauchy problems with increasingly strong confining potentials defined outside such domain. Two different approaches are analysed, making crucial use of uniform estimates for energy and entropy functionals respectively. In both cases we prove that the problem in a bounded domain can be seen as a limit problem in the whole space involving a suitably chosen sequence of large confining potentials.
This is joint work with Maria Bruna and José Antonio Carrillo.
 

Subscribe to