Mon, 05 Feb 2018

14:15 - 15:15
L5

On symplectic stabilisations and mapping classes

Ailsa Keating
(Cambridge)
Abstract

In real dimension two, the symplectic mapping class group of a surface agrees with its `classical' mapping class group, whose properties are well-understood. To what extend do these generalise to higher-dimensions? We consider specific pairs of symplectic manifolds (S, M), where S is a surface, together with collections of Lagrangian spheres in S and in M, say v_1, ...,v_k and V_1, ...,V_k, that have analogous intersection patterns, in a sense that we will make precise. Our main theorem is that any relation between the Dehn twists in the V_i must also hold between Dehn twists in the v_i. Time allowing, we will give some corollaries, such as embeddings of certain interesting groups into auto-equivalence groups of Fukaya categories.

 

Mon, 29 Jan 2018

14:15 - 15:15
L5

Compactness results for minimal hypersurfaces with bounded index

Reto Buzano
(Queen Mary University London)
Abstract

First, we will discuss sequences of closed minimal hypersurfaces (in closed Riemannian manifolds of dimension up to 7) that have uniformly bounded index and area. In particular, we explain a bubbling result which yields a bound on the total curvature along the sequence and, as a consequence, topological control in terms of index and area. We then specialise to minimal surfaces in ambient manifolds of dimension 3, where we use the bubbling analysis to obtain smooth multiplicity-one convergence under bounds on the index and genus. This is joint work with Lucas Ambrozio, Alessandro Carlotto, and Ben Sharp

Mon, 22 Jan 2018

14:15 - 15:15
L5

Geometry of subrings

Brent Doran
(Oxford)
Abstract

 The basic algebra-geometry dictionary for finitely generated k-algebras is one of the triumphs of 19th and early 20th century mathematics.  However, classes of related rings, such as their k-subalgebras, lack clean general properties or organizing principles, even when they arise naturally in problems of smooth projective geometry.  “Stabilization” in smooth topology and symplectic geometry, achieved by products with Euclidean space, substantially simplifies many
problems.  We discuss an analog in the more rigid setting of algebraic and arithmetic geometry, which, among other things (e.g., applications to counting rational points), gives some structure to the study of k-subalgebras.  We focus on the case of the moduli space of stable rational n-pointed curves to illustrate.

 

Wed, 29 Nov 2017
11:00
N3.12

The mystical field with one element

Alex Saad
Abstract

The “field with one element” is an interesting algebraic object that in some sense relates linear algebra with set theory. In a much deeper vein it is also expected to have a role in algebraic geometry that could potentially “lift" Deligne’s proof of the final Weil Conjecture for varieties over finite fields to a proof of the Riemann hypothesis for the Riemann zeta function. The only problem is that it doesn’t exist. In this highly speculative talk I will discuss some of these concepts, and focus mainly on zeta functions of algebraic varieties over finite fields. I will give a (very) brief sketch of how to interpret various zeta functions in a geometric context, and try to explain what goes wrong for the Riemann zeta function that makes this a difficult problem.

Thu, 14 Jun 2018

16:00 - 17:30
L3

Flagellar motility and metaboly in Euglena gracilis: lessons on locomotion and shape control from a unicellular protist

Antonio Desimone
(SISSA)
Abstract

Locomotion strategies employed by unicellular organism are a rich source of inspiration for studying mechanisms for shape control. They are particularly interesting because they are invisible to the naked eye, and offer surprising new solutions to the question of how shape can be controlled.

In recent years, we have studied locomotion and shape control in Euglena gracilis. This unicellular protist is particularly intriguing because it can adopt different motility strategies: swimming by flagellar propulsion, or crawling thanks to large amplitude shape changes of the whole body (a behavior known as metaboly). We will survey our most recent findings within this stream of research.

Thu, 10 May 2018

16:00 - 17:30
L2

Flows about superhydrophobic surfaces

Ehud Yariv
(Technion)
Abstract

Superhydrophobic surfaces, formed by air entrapment within the cavities of a hydrophobic solid substrate, offer a promising potential for drag reduction in small-scale flows. It turns out that low-drag configurations are associated with singular limits, which to date have typically been addressed using numerical schemes. I will discuss the application of singular perturbations to several of the canonical problems in the field. 


 

Magneto-optic probe measurements in low density-supersonic jets
Oliver, M White, T Mabey, P Kuhn-Kauffeldt, M Dohl, L Bingham, R Clarke, R Graham, P Heathcote, R Koenig, M Kuramitsu, Y Lamb, D Meinecke, J Michel, T Miniati, F Notley, M Reville, B Sarkar, S Sakawa, Y Schekochihin, A Tzeferacos, P Woolsey, N Gregori, G Journal of Instrumentation volume 12 issue December (01 Dec 2017)
Subscribe to