Fri, 26 May 2017

16:00 - 17:00
L1

North meets South Colloquium

Erik Panzer + Yuji Nakatsukasa
(Mathematical Institute, University of Oxford)
Abstract

Erik

Erik Panzer

Feynman integrals, graph polynomials and zeta values

Where do particle physicists, algebraic geometers and number theorists meet?

Feynman integrals compute how elementary particles interact and they are fundamental for our understanding of collider experiments. At the same time, they provide a rich family of special functions that are defined as period integrals, including special values of certain L functions.

In the talk I will give the definition of Feynman integrals via graph polynomials and discuss some examples that evaluate to values of the Riemann zeta function. Then I will discuss some of the interesting questions in this field and mention some of the techniques that are used to study these.

 

[[{"fid":"47855","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":"Yuji Nakatsukasa","field_file_image_title_text[und][0][value]":"Yuji Nakatsukasa"},"type":"media","attributes":{"alt":"Yuji Nakatsukasa","title":"Yuji Nakatsukasa","height":"258","width":"258","class":"media-element file-media-square"}}]]

Yuji Nakatsukasa

Computing matrix eigenvalues

The numerical linear algebra community solves two main problems: linear systems, and eigenvalue problems. They are both vastly important; it would not be too far-fetched to say that most (continuous) problems in scientific computing eventually boil down to one or both of these.

This talk focuses on eigenvalue problems. I will first describe some of their applications, such as Google's PageRank, PCA, finding zeros and poles of functions, and global optimization. I will then turn to algorithms for computing eigenvalues, namely the classical QR algorithm---which is still the basis for state-of-the-art. I will emphasize that the underlying mathematics is (together with the power method and numerical stability analysis) rational approximation theory.

Thu, 08 Jun 2017

16:00 - 17:00
L3

Population Dispersal in Spatially Structured Domains & Modelling and computation for compacting sedimentary basins

Andrew Krause, Jane Lee
(Oxford University)
Abstract

Understanding the spatial distribution of organisms throughout an environment is an important topic in population ecology. We briefly review ecological questions underpinning certain mathematical work that has been done in this area, before presenting a few examples of spatially structured population models. As a first example, we consider a model of two species aggregation and clustering in two-dimensional domains in the presence of heterogeneity, and demonstrate novel aggregation mechanisms in this setting. We next consider a second example consisting of a predator-prey-subsidy model in a spatially continuous domain where the spatial distribution of the subsidy influences the stability and spatial structure of steady states of the system. Finally, we discuss ongoing work on extending such results to network-structured domains, and discuss how and when the presence of a subsidy can stabilize predator-prey dynamics."

-------------------------------------------------------------------------------------------------------------------------------

Compaction is a primary process in the evolution of a sedimentary basin. Various 1D models exist to model a basin compacting due to overburden load. We explore a multi-dimensional model for a basin undergoing mechanical and chemical compaction. We discuss some properties of our model. Some test cases in the presence of geological features are considered, with appropriate numerical techniques presented.

Fri, 21 Apr 2017

16:00 - 17:00
L1

3 minutes to explain your work

Dyrol Lumbard and Vicky Neale
Abstract

Research takes a long time while the attention span of the world is apparently decreasing, so today's researchers need to be able to get their message across quickly and succinctly. In this session we'll share some tips on how to communicate the key messages of your work in just a few minutes, and give you a chance to have a go yourself.  This will be helpful for job and funding applications and interviews, and also for public engagement. In September there will be an opportunity to do it for real, for our alumni, when we'll showcase Oxford Mathematics at the Alumni Weekend.

Mon, 24 Apr 2017

15:45 - 16:45
L3

An analytic BPHZ theorem for regularity structures

AJAY CHANDRA
(University of Warwick)
Abstract

I will described how ideas from constructive quantum field theory can be adapted to produce a systematic approach for analytic renormalization in the theory of regularity structures.

Fri, 16 Jun 2017

14:00 - 15:00
C2

Cooperating around a theory: the example of lattice theory in the 1930s

Simon Decaens
(Université Paris Diderot)
Abstract

In 1933, lattice theory was a new subject, put forth by Garrett Birkhoff. In contrast, in 1940, it was already a mature subject, worth publishing a book on. Indeed, the first monograph, written by the same G. Birkhoff, was the result of these 7 years of working on a lattice theory. In my talk, I would like to focus on this fast development. I will present the notion of a theory not only as an actors' category but as an historical category. Relying on that definition, I would like to focus on some collaborations around the notion of lattices. In particular, we will study lattice theory as a meeting point between the works of G. Birkhoff and two other mathematicians: John von Neumann and Marshall Stone.

Tue, 06 Jun 2017
14:00
L2

Analysis of Magnus expansion methods in the semiclassical regime

Pranav Singh
(Mathematical Institute)
Abstract


Magnus expansion based methods are an efficient class of integrators for solving Schrödinger equations that feature time dependent potentials such as lasers. These methods have been found to be highly effective in computational quantum chemistry since the pioneering work of Tal Ezer and Kosloff in the early 90s. The convergence of the Magnus expansion, however, is usually understood only for ODEs and traditional analysis suggests a much poorer performance of these methods than observed experimentally. It was not till the work of Hochbruck and Lubich in 2003 that a rigorous analysis justifying the application to PDEs with unbounded operators, such as the Schrödinger equation, was presented. In this talk we will extend this analysis to the semiclassical regime, where the highly oscillatory solution conventionally suggests large errors and a requirement for very small time steps.
 

Tue, 23 May 2017
14:00
L5

Sparse Kerdock matrices for compressive sensing

Andrew Thompson
(Mathematical Institute)
Abstract

Delsarte-Goethals frames are a popular choice for deterministic measurement matrices in compressive sensing. I will show that it is possible to construct extremely sparse matrices which share precisely the same row space as Delsarte-Goethals frames. I will also describe the combinatorial block design underlying the construction and make a connection to Steiner equiangular tight frames.
 

Thu, 11 May 2017
16:00
L6

Lifting theorems in Galois cohomology

Mathieu Florence
(Université Paris 6)
Abstract

The aim of this talk is to explain how to axiomatize Hilbert's Theorem 90, in the setting of (the cohomology with finite coefficients of) profinite groups. I shall first explain the general framework.  It includes, in particular, the use of divided power modules over Witt vectors; a process which appears to be of independent interest in the theory of modular representations. I shall then give several applications to Galois cohomology, notably to the problem of lifting mod p Galois representations (or more accurately: torsors under these) modulo higher powers of p. I'll also explain the connection with the Bloch-Kato conjecture in Galois cohomology, proved by Rost, Suslin and Voevodsky. This is joint work in progress with Charles De Clercq.

Fri, 02 Jun 2017

16:00 - 17:00
L1

How to shine in an interview

Rachel Bray
(Careers Service University of Oxford)
Abstract

In this session we will refresh our understanding of the purpose of an interview, review some top tips, and practise answering some typical interview questions. Rachel will also signpost further resources on interview preparation available at the Careers Service.

Subscribe to