Tue, 18 Oct 2016
15:45
L4

Separating invariants and local cohomology

Emilie DuFresne
(Oxford)
Abstract

The study of separating invariants is a new trend in Invariant Theory and a return to its roots: invariants as a classification tool. For a finite group acting linearly on a vector space, a separating set is simply a set of invariants whose elements separate the orbits o the action. Such a set need not generate the ring of invariants. In this talk, we give lower bounds on the size of separating sets based on the geometry of the action. These results are obtained via the study of the local cohomology with support at an arrangement of linear subspaces naturally arising from the action.

(Joint with Jack Jeffries)

Fri, 28 Oct 2016
09:00
N3.12

TBA

Lena Gal
((Oxford University))
Tue, 17 Jan 2017

14:15 - 15:15
L4

Endo-parameters and the Local Langlands Correspondence for classical groups

Shaun Stevens
(University of East Anglia)
Abstract

The local Langlands correspondence for classical groups gives a natural finite-to-one map between certain representations of p-adic classical groups and certain self-dual representations of the absolute Weil group of a p-adic field (and more). On both sides of the correspondence, the description of the representations involves a ``wild part'' of more arithmetic nature and a ``tame part'' of more geometric nature, and the notion of endo-parameter (due to Bushnell--Henniart for general linear groups) is designed to describe the ``wild part'' of the Langlands correspondence. I will explain what this means and the connection with representations of affine Hecke algebras. This is joint work with Blondel--Henniart, with Lust, and with Kurinczuk--Skodlerack.

Tue, 24 Jan 2017

14:15 - 15:15
L4

An Euler-Poincare formula for a depth zero Bernstein projector

Allen Moy
(Hong Kong University of Science and Technology)
Abstract


Work of Bezrukavnikov-Kazhdan-Varshavsky uses an equivariant system of trivial idempotents of Moy-Prasad groups to obtain an
Euler-Poincare formula for the r-depth Bernstein projector. We establish an Euler-Poincare formula for the projector to an individual depth zero Bernstein component in terms of an equivariant system of Peter-Weyl idempotents of parahoric subgroups P associated to a block of the reductive quotient of P.  This work is joint with Dan Barbasch and Dan Ciubotaru.
 

Tue, 18 Oct 2016

12:45 - 13:30
C5

Scalable Two-Phase Flow Solvers

Niall Bootland
(University of Oxford)
Abstract

My research focuses on numerical techniques that help provide scalable computation within simulations of two-phase fluid flow problems. The efficient solution of the linear systems which arise is key to obtaining practical computation. I will motivate and discuss new methods which seek to generalise effective techniques for a single phase to the more challenging setting of two-phase flow where the governing equations have discontinuous coefficients.

Tue, 18 Oct 2016

14:15 - 15:15
L4

Tensor diagrams and Chebyshev polynomials

Lisa Lamberti
(Oxford)
Abstract

Given a complex vector space $V$, consider the ring $R_{a,b}(V)$ of polynomial functions on the space of configurations of $a$ vectors and $b$ covectors which are invariant under the natural action of $SL(V)$. Rings of this type play a central role in representation theory, and their study dates back to Hilbert. Over the last three decades, different bases of these spaces with remarkable properties were found. To explicitly construct, as well as to compare, some of these bases remains a challenging problem, already open when $V$ is 3-dimensional. 
In this talk, I report on recent developments in the 3-dimensional setting of this theory.

Tue, 01 Nov 2016

15:45 - 16:45
L4

A geometric approach to Hall algebras

Adam Gal
(Oxford)
Abstract

The Hall algebra can be constructed using the Waldhausen S-construction. We will give a systematic recipe for this and show how it extends naturally to give a bi-algebraic structure. As a result we obtain a more transparent proof of Green's theorem about the bi-algebra structure on the Hall algebra.

Subscribe to