15:45
15:45
15:45
Separating invariants and local cohomology
Abstract
The study of separating invariants is a new trend in Invariant Theory and a return to its roots: invariants as a classification tool. For a finite group acting linearly on a vector space, a separating set is simply a set of invariants whose elements separate the orbits o the action. Such a set need not generate the ring of invariants. In this talk, we give lower bounds on the size of separating sets based on the geometry of the action. These results are obtained via the study of the local cohomology with support at an arrangement of linear subspaces naturally arising from the action.
(Joint with Jack Jeffries)
10:00
Introductory chiral algebras: A journey through D-modules, infinity categories, and the Ran space.
Abstract
We will introduce some ideas from geometric representation theory, including basic D-modules, (a realisation of) infinity categories, and the Ran space, and then go on to define chiral and factorisation algebras.
This talk has no prerequisites.
Endo-parameters and the Local Langlands Correspondence for classical groups
Abstract
The local Langlands correspondence for classical groups gives a natural finite-to-one map between certain representations of p-adic classical groups and certain self-dual representations of the absolute Weil group of a p-adic field (and more). On both sides of the correspondence, the description of the representations involves a ``wild part'' of more arithmetic nature and a ``tame part'' of more geometric nature, and the notion of endo-parameter (due to Bushnell--Henniart for general linear groups) is designed to describe the ``wild part'' of the Langlands correspondence. I will explain what this means and the connection with representations of affine Hecke algebras. This is joint work with Blondel--Henniart, with Lust, and with Kurinczuk--Skodlerack.
An Euler-Poincare formula for a depth zero Bernstein projector
Abstract
Work of Bezrukavnikov-Kazhdan-Varshavsky uses an equivariant system of trivial idempotents of Moy-Prasad groups to obtain an
Euler-Poincare formula for the r-depth Bernstein projector. We establish an Euler-Poincare formula for the projector to an individual depth zero Bernstein component in terms of an equivariant system of Peter-Weyl idempotents of parahoric subgroups P associated to a block of the reductive quotient of P. This work is joint with Dan Barbasch and Dan Ciubotaru.
Scalable Two-Phase Flow Solvers
Abstract
My research focuses on numerical techniques that help provide scalable computation within simulations of two-phase fluid flow problems. The efficient solution of the linear systems which arise is key to obtaining practical computation. I will motivate and discuss new methods which seek to generalise effective techniques for a single phase to the more challenging setting of two-phase flow where the governing equations have discontinuous coefficients.
Tensor diagrams and Chebyshev polynomials
Abstract
Given a complex vector space $V$, consider the ring $R_{a,b}(V)$ of polynomial functions on the space of configurations of $a$ vectors and $b$ covectors which are invariant under the natural action of $SL(V)$. Rings of this type play a central role in representation theory, and their study dates back to Hilbert. Over the last three decades, different bases of these spaces with remarkable properties were found. To explicitly construct, as well as to compare, some of these bases remains a challenging problem, already open when $V$ is 3-dimensional.
In this talk, I report on recent developments in the 3-dimensional setting of this theory.
A geometric approach to Hall algebras
Abstract
The Hall algebra can be constructed using the Waldhausen S-construction. We will give a systematic recipe for this and show how it extends naturally to give a bi-algebraic structure. As a result we obtain a more transparent proof of Green's theorem about the bi-algebra structure on the Hall algebra.