Wed, 06 May 2015

16:00 - 17:00
C1

Thompson's Groups

Giles Gardam
(Oxford)
Abstract

This talk will be an introduction to the weird and wonderful world of Thompson's groups $F$, $T$ and $V$. For example, the group $T$ was the first known finitely presented infinite simple group, $V$ has a finitely presented subgroup with co-NP-complete word problem, and whether or not $F$ is amenable is an infamous open problem.

The word ‘chiral’ comes from the Greek word, kheir, which means ‘hand’. An object is said to be chiral if it cannot be superimposed on its mirror image. For instance, your hands are chiral. If you place your right hand over your left hand, it doesn’t fit – the thumbs stick out in opposite directions. And when you turn your hands to point them in the same direction the palm of your hand still looks different to the back of your hand. 

Mon, 18 May 2015

16:00 - 17:00
C2

A Survey of Results on the Section Conjecture

Michael Tyler
(Exeter)
Abstract

After some generalities on étale fundamental groups and anabelian geometry, I will explore some of the current results on the section conjecture, including those of Koenigsmann and Pop on the birational section conjecture, and a recent unpublished result of Mohamed Saidi which reduces the section conjecture for finitely generated fields over the rationals to the case of number fields.

Mon, 08 Jun 2015

16:00 - 17:00
C2

Diophantine geometry over function fields

Netan Dogra
(Oxford)
Abstract

Many hard problems in Diophantine geometry have analogues over function fields which are less hard. I will give some examples.

Mon, 29 Jun 2015
00:00

tba

Dharmanand Baboolal
(Durban)
Wed, 06 May 2015

11:00 - 12:30
N3.12

Voting Systems and Arrow's Impossibility Theorem

Robert Kropholler
(Oxford)
Abstract

With the general election looming upon I will discuss the various different kinds of voting system that one could implement in such an election. I will show that these can give very different answers to the same set of voters. I will then discuss Arrow's Impossibility Theorem which shows that no voting system is compatible with 4 simple axioms which may be desireable.

Tue, 19 May 2015

14:30 - 15:00
L5

Preconditioning for boundary control problems in fluid dynamics

Gennadij Heidel
(University of Trier)
Abstract

In recent years, several preconditioning strategies have been proposed for control problems in fluid dynamics. These are a special case of the general saddle point problem in optimisation. Here, we will extend a preconditionier for distributed Stokes control problems, developed by Rees and Wathen, to the case of boundary control. We will show the usefulness of low-rank structures in constructing a good approximation for the Schur complement of the saddle point matrix. In the end, we will discuss the applicability of this strategy for Navier-Stokes control.

Subscribe to