14:15
Closed symmetric differentials on projective surfaces
Mirror symmetry for varieties of general type
Abstract
Non-reductive geometric invariant theory and applications in algebraic, symplectic and hyperkahler geometry
The 2014 SASTRA Ramanujan Prize has been awarded to Dr. James Maynard of Oxford University and the University of Montreal, Canada for his contribution to Number theory, especially in the field of Prime Numbers.
Is the Helmholtz equation really sign-indefinite?
Abstract
The usual variational formulations of the Helmholtz equation are sign-indefinite (i.e. not coercive). In this talk, I will argue that this indefiniteness is not an inherent feature of the Helmholtz equation itself, only of its standard formulations. I will do this by presenting new sign-definite formulations of several Helmholtz boundary value problems.
This is joint work with Andrea Moiola (Reading).
Incomplete Cholesky preconditioners based on orthogonal dropping : theory and practice
Abstract
Incomplete Cholesky factorizations are commonly used as black-box preconditioners for the iterative solution of large sparse symmetric positive definite linear systems. Traditionally, incomplete
factorizations are obtained by dropping (i.e., replacing by zero) some entries of the factors during the factorization process. Here we consider a less common way to approximate the factors : through low-rank approximations of some off-diagonal blocks. We focus more specifically on approximation schemes that satisfy the orthogonality condition: the approximation should be orthogonal to the corresponding approximation error.
The resulting incomplete Cholesky factorizations have attractive theoretical properties. First, the underlying factorization process can be shown breakdown-free. Further, the condition number of the
preconditioned system, that characterizes the convergence rate of standard iterative schemes, can be shown bounded as a function of the accuracy of individual approximations. Hence, such a bound can benefit from better approximations, but also from some algorithmic peculiarities. Eventually, the above results can be shown to hold for any symmetric positive definite system matrix.
On the practical side, we consider a particular variant of the preconditioner. It relies on a nested dissection ordering of unknowns to insure an attractive memory usage and operations count. Further, it exploits in an algebraic way the low-rank structure present in system matrices that arise from PDE discretizations. A preliminary implementation of the method is compared with similar Cholesky and
incomplete Cholesky factorizations based on dropping of individual entries.