15:45
Hamiltonian and quasi-Hamiltonian reduction via derived symplectic geometry
Abstract
I will explain an approach to Hamiltonian reduction using derived
symplectic geometry. Roughly speaking, the reduced space can be
presented as an intersection of two Lagrangians in a shifted symplectic
space, which therefore carries a natural symplectic structure. A slight
modification of the construction gives rise to quasi-Hamiltonian
reduction. This talk will also serve as an introduction to the wonderful
world of derived symplectic geometry where statements that morally ought
to be true are indeed true.
15:45
Exotic spheres and the topology of the symplectomorphism group
Abstract
Using the fact that certain exotic spheres do not admit Lagrangian embeddings into $T^*{\mathcal S}^{n+1}$, as proven by Abouzaid and Ekholm-Smith, we produce non-trivial homotopy classes of the group of compactly supported symplectomorphisms of $T^*{\mathcal S}^n$. In particular, we show that the Hamiltonian isotopy class of the symplectic Dehn twist depends on the parametrisation used in the construction. Related results are also obtained for $T^*({\mathcal S}^n \times {\mathcal S}^1)$.
Joint work with Jonny Evans.
16:00
Superrotation in Held & Suarez-like flows with weak surface temperature gradient NB CHANGE IN TIME
14:15
Overturning ideas: Disentangling the climate system using thermodynamic coordinates
15:45
The homological projective dual of Sym^2(P^n)
Abstract
In recent years, some powerful tools for computing semi-orthogonal decompositions of derived categories of algebraic varieties have been developed: Kuznetsov's theory of homological projective duality and the closely related technique of VGIT for LG models. In this talk I will explain how the latter works and how it can be used to understand the derived categories of complete intersections in Sym^2(P^n). As a consequence, we obtain a new proof of result of Hosono and Takagi, which says that a certain pair of non-birational Calabi-Yau 3-folds are derived equivalent.
15:45
Complex Geometry and the Hele-Shaw flow
Abstract
The goal of this talk is to discuss a link between the Homogeneous Monge Ampere Equation in complex geometry, and a certain flow in the plane motivated by some fluid mechanics. After discussing and motivating the Dirichlet problem for this equation I will focus to what is probably the first non-trivial case that one can consider, and prove that it is possible to understand regularity of the solution in terms of what is known as the Hele-Shaw flow in the plane. As such we get, essentially explicit, examples of boundary data for which there is no regular solution, contrary to previous expectation. All of this is joint work with David Witt Nystrom.