16:00
C*-algebras coming from buildings and their K-theory.
Abstract
On arbitrary Carnot groups, the only hypoelliptic Hodge-Laplacians on forms that have been introduced are 0-order pseudodifferential operators constructed using the Rumin complex. However, to address questions where one needs sharp estimates, this 0-order operator is not suitable. Indeed, this is a rather difficult problem to tackle in full generality, the main issue being that the Rumin exterior differential is not homogeneous on arbitrary Carnot groups. In this talk, I will focus on the specific example of the free Carnot group of step 3 with 2 generators, where it is possible to introduce different hypoelliptic Hodge-Laplacians on forms. Such Laplacians can be used to obtain sharp div-curl type inequalities akin to those considered by Bourgain & Brezis and Lanzani & Stein for the de Rham complex, or their subelliptic counterparts obtained by Baldi, Franchi & Pansu for the Rumin complex on Heisenberg groups
Von Neumann algebras which are not matrix algebras, yet still possess a unique trace, form a basic class called II$_1$ factors. The set of asymptotically commuting elements (or, the relative commutant of the algebra within its own ultrapower), dubbed the central sequence algebra, can take many different forms. In this talk, we discuss an elementary class of II$_1$ factors whose central sequence algebra is again a II$_1$ factor. We show that the class of infinitely generic II$_1$ factors possess this property, and ask some related questions about properties of other existentially closed II$_1$ factors. This is based on joint work with Isaac Goldbring, David Jekel, and Srivatsav Kunnawalkam Elayavalli.
Given a locally compact topological group, there is a correspondence between idempotent probability measures and compact subgroups. An analogue of this correspondence continues into the model theoretic setting. In particular, if G is a stable group, then there is a one-to-one correspondence between idempotent Keisler measures and type-definable subgroups. The proof of this theorem relies heavily on the theory of local ranks in stability theory. Recently, we have been able to extend a version of this correspondence to the abelian setting. Here, we prove that fim idempotent Keisler measures correspond to fim subgroups. These results rely on recent work of Conant, Hanson and myself connecting generically stable measures to generically stable types over the randomization. This is joint work with Artem Chernikov and Krzysztof Krupinski.
I will introduce the class of causally-null-compactifiable spacetimes that can be canonically converted into compact timed-metric spaces using the cosmological time function of Andersson-Galloway-Howard and the null distance of Sormani-Vega. This class of space-times includes future developments of compact initial data sets and regions exhausting asymptotically flat space-times. I will discuss various intrinsic notions of distance between such space-times and show that some of them are definite in the sense that they are equal to zero if and only if there is a time-oriented Lorentzian isometry between the space-times. These definite distances allow us to define notions of convergence of space-times to limit space-times that are not necessarily smooth. This is joint work with Christina Sormani.