Part B & C students: Please keep an eye on the timetables and check Moodle regularly for updates on revision lectures and consultation sessions.
Fixation probability and suppressors of natural selection on higher-order networks
Abstract
Population structure substantially affects evolutionary dynamics. Networks that promote the spreading of fitter mutants are called amplifiers of selection, and those that suppress the spreading of fitter mutants are called suppressors of selection. It has been discovered that most networks are amplifiers under the so-called birth-death updating combined with uniform initialization, which is a common condition. We discuss constant-selection evolutionary dynamics with binary node states (which is equivalent to the biased voter model with two opinions in statistical physics research community) on higher-order networks, i.e., hypergraphs, temporal networks, and multilayer networks. In contrast to the case of conventional networks, we show that a vast majority of these higher-order networks are suppressors of selection, which we show by random-walk and Martingale analyses as well as by numerical simulations. Our results suggest that the modeling framework for structured populations in addition to the specific network structure is an important determinant of evolutionary dynamics.
Living discreetly but thinking continuously: Dynamic networks and stochastic approximation
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
Abstract
Models for networks that evolve and change over time are ubiquitous in a host of domains including modeling social networks, understanding the evolution of systems in proteomics, the study of the growth and spread of epidemics etc.
This talk will give a brief summary of three recent findings in this area where stochastic approximation techniques play an important role:
- Understanding the effect and detectability of change point in the evolution of the system dynamics.
- Reconstructing the initial "seed" that gave rise to the current network, sometimes referred to as Network Archeology.
- The disparity in the behavior of different centrality measures such as degree and page rank centrality for measuring popularity in settings where there are vertices of different types such as majorities and minorities as well as insight analyzing such problems give for at first sight unrelated issues such as sampling rare groups within the network.
The main goal will to be convey unexpected findings in each of these three areas and in particular the "unreasonable effectiveness" of continuous time branching processes.