Existentially closed valued difference fields
Abstract
The Ultimate Supercompactness Measure
Abstract
Solovay defined the inner model $L(\mathbb{R}, \mu)$ in the context of $\mathsf{AD}_{\mathbb{R}}$ by using it to define the supercompactness measure $\mu$ on $\mathcal{P}_{\omega_1}(\mathbb{R})$ naturally given by $\mathsf{AD}_{\mathbb{R}}$. Solovay speculated that stronger versions of this inner model should exist, corresponding to stronger versions of the measure $\mu$. Woodin, in his unpublished work, defined $\mu_{\infty}$ which is arguably the ultimate version of the supercompactness measure $\mu$ that Solovay had defined. I will talk about $\mu_{\infty}$ in the context of $\mathsf{AD}^+$ and the axiom $\mathsf{V} = \mathsf{Ultimate\ L}$.
Demushkin groups of infinite rank in Galois theory
Abstract
Basics of Globally Valued Fields and density of norms
Abstract
I will report on a joint work with Pablo Destic and Nuno Hultberg, about some applications of Globally Valued Fields (GVFs) and I will describe a density result that we needed, which turns out to be connected to Riemann-Zariski and Berkovich spaces.
Skolem problem for several matrices
Abstract
I will present a recent work with G. Kocharyan, where we show the undecidability of the following two problems: given a finitely generated subgroup G of GL(n,Q), a) determine whether G has a non-identity element whose (i,j) entry is equal to zero, and b) determine whether the stabilizer of a given vector in G is non-trivial. Undecidability of problem b) answers a question of Dixon from 1985. The proofs reduce to the undecidability of the word problem for finitely presented groups.