Mon, 07 Nov 2022

15:30 - 16:30
L1

Gibbs measures, canonical stochastic quantization, and singular stochastic wave equations

Tadahiro Oh
Abstract

In this talk, I will discuss the (non-)construction of the focusing Gibbs measures and the associated dynamical problems. This study was initiated by Lebowitz, Rose, and Speer (1988) and continued by Bourgain (1994), Brydges-Slade (1996), and Carlen-Fröhlich-Lebowitz (2016). In the one-dimensional setting, we consider the mass-critical case, where a critical mass threshold is given by the mass of the ground state on the real line. In this case, I will show that the Gibbs measure is indeed normalizable at the optimal mass threshold, thus answering an open question posed by Lebowitz, Rose, and Speer (1988).

In the three dimensional-setting, I will first discuss the construction of the $\Phi^3_3$-measure with a cubic interaction potential. This problem turns out to be critical, exhibiting a phase transition:normalizability in the weakly nonlinear regime and non-normalizability in the strongly nonlinear regime. Then, I will discuss the dynamical problem for the canonical stochastic quantization of the $\Phi^3_3$-measure, namely, the three-dimensional stochastic damped nonlinear wave equation with a quadratic nonlinearity forced by an additive space-time white noise (= the hyperbolic $\Phi^3_3$-model). As for the local theory, I will describe the paracontrolled approach to study stochastic nonlinear wave equations, introduced in my work with Gubinelli and Koch (2018). In the globalization part, I introduce a new, conceptually simple and straightforward approach, where we directly work with the (truncated) Gibbs measure, using the variational formula and ideas from theory of optimal transport.

The first part of the talk is based on a joint work with Philippe Sosoe (Cornell) and Leonardo Tolomeo (Bonn/Edinburgh), while the second part is based on a joint work with Mamoru Okamoto (Osaka) and Leonardo Tolomeo (Bonn/Edinburgh).

Dynamic core-periphery structure of information sharing networks in entorhinal cortex and hippocampus.
Pedreschi, N Bernard, C Clawson, W Quilichini, P Barrat, A Battaglia, D Network neuroscience (Cambridge, Mass.) volume 4 issue 3 946-975 (Jan 2020)
Fri, 28 Oct 2022
10:00
L6

Dynamical ticket pricing for movies

Bhavesh Joshi
(MovieMe)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

Movie Me would like offer dynamical pricing for movie tickets, considering consumer’s demand for the movie, showtime and lead time before the show begins, such that the overall quantity of tickets sold is maximized. We encourage all interested party to join us and especially those interested in data science, optimization and mathematical finance.

Inertio-capillary rebound of a droplet impacting a fluid bath
Alventosa, L Cimpeanu, R Harris, D (27 Sep 2022)
Mon, 28 Nov 2022
15:30
L5

Modular Functors and Factorization Homology

Lukas Woike
Abstract

A modular functor is defined as a system of mapping class group representations on vector spaces (the so-called conformal blocks) that is compatible with the gluing of surfaces. The notion plays an important role in the representation theory of quantum groups and conformal field theory. In my talk, I will give an introduction to the theory of modular functors and recall some classical constructions. Afterwards, I will explain the approach to modular functors via cyclic and modular operads and their bicategorical algebras. This will allow us to extend the known constructions of modular functors and to classify modular functors by certain cyclic algebras over the little disk operad for which an obstruction formulated in terms of factorization homology vanishes. (The talk is based to a different extent on different joint works with Adrien Brochier, Lukas Müller and Christoph Schweigert.)

Mon, 21 Nov 2022
15:30
L5

An SL₂(R) Casson-Lin invariant

Jacob Rasmussen
Abstract

Around 30 years ago, Lin defined an analog of the Casson invariant for knots. This invariant counts representations of the knot group into SU(2) which satisfy tr(ρ(m)) = c for some fixed c. As a function of c, the Casson-Lin invariant turns out to be given by the Levine-Tristram signature function.

If K is a small knot in S³, I'll describe a version of the Casson-Lin invariant which counts representations of the knot group into SL₂(R) with tr(ρ(m)) = c for c in [-2,2]. The sum of the SU(2) and SL₂(R) invariants is a constant h(K), independent of c. I'll discuss the proof of this fact and give some applications to the existence of real parabolic representations and left-orderings. This is joint work with Nathan Dunfield.

Mon, 07 Nov 2022
15:30
L5

From veering triangulations to dynamic pairs

Saul Schleimer
Abstract

Ideal triangulations were introduced by Thurston as a tool for studying hyperbolic three-manifolds.  Taut ideal triangulations were introduced by Lackenby as a tool for studying "optimal" representatives of second homology classes.

After these applications in geometry and topology, it is time for dynamics. Veering triangulations (taut ideal triangulations with certain decorations) were introduced by Agol to study the mapping tori of pseudo-Anosov homeomorphisms.  Gueritaud gave an alternative construction, and then Agol and Gueritaud generalised it to find veering triangulations of three-manifolds admitting pseudo-Anosov flows (without perfect fits).

We prove the converse of their result: that is, from any veering triangulation we produce a canonical dynamic pair of branched surfaces (in the sense of Mosher).  These give flows on appropriate Dehn fillings of the original manifold.  Furthermore, our construction and that of Agol--Gueritaud are inverses.  This then gives a "perfect" combinatorialisation of pseudo-Anosov flow (without perfect fits).

This is joint work with Henry Segerman.

Mon, 31 Oct 2022
15:30
L5

The Landau-Ginzburg – Conformal Field Theory Correspondence and Module Tensor Categories

Thomas Wassermann
Abstract

In this talk, I will first give a brief introduction to the Landau-Ginzburg -- Conformal Field Theory (LG-CFT) correspondence, a prediction from physics. This prediction links aspects of Landau-Ginzburg models, described by matrix factorisations for a polynomial known as the potential, with Conformal Field Theories, described by for example vertex operator algebras. While both sides of the correspondence have good mathematical descriptions, it is an open problem to give a mathematical formulation of the correspondence. 

After this introduction, I will discuss the only known realisation of this correspondence, for the potential $x^d$. For even $d$ this is a recent result, and I will give a sketch of the proof which uses the tools of module tensor categories

 I will not assume prior knowledge of matrix factorisations, CFTs, or module tensor categories. This talk is based on joint work with Ana Ros Camacho.

Mon, 17 Oct 2022
15:30
L5

4-manifolds with infinite cyclic fundamental group and knotted surfaces

Mark Powell
Abstract

I will present classification results for 4-manifolds with boundary and infinite cyclic fundamental group, obtained in joint work with Anthony Conway and with Conway and Lisa Piccirillo.  Time permitting, I will describe applications to knotted surfaces in simply connected 4-manifolds, and to investigating the difference between the relations of homotopy equivalence and stable homeomorphism. These will also draw on work with Patrick Orson and with Conway,  Diarmuid Crowley, and Joerg Sixt.

Mon, 10 Oct 2022
15:30
L5

On not the rational dualizing module for Aut(F_n)

Zachary Hines
Abstract

Bestvina--Feighn proved that Aut(F_n) is a rational duality group, i.e. there is a Q[Aut(F_n)]-module, called the rational dualizing module, and a form of Poincare duality relating the rational cohomology of Aut(F_n) to its homology with coefficients in this module. Bestvina--Feighn's proof does not give an explicit combinatorial description of the rational dualizing module of Aut(F_n). But, inspired by Borel--Serre's description of the rational dualizing module of arithmetic groups, Hatcher--Vogtmann constructed an analogous module for Aut(F_n) and asked if it is the rational dualizing module. In work with Miller, Nariman, and Putman, we show that Hatcher--Vogtmann's module is not the rational dualizing module.

Subscribe to