The space of barcode bases for persistence modules
Jacquard, E Nanda, V Tillmann, U Journal of Applied and Computational Topology volume 7 1-30 (13 Jul 2022)
Fri, 27 May 2022

15:00 - 16:00
L2

The nonlinear stability of Kerr for small angular momentum

Sergiu Klainerman
(Princeton)
Abstract

I will report on my most recent results  with Jeremie Szeftel and Elena Giorgi which conclude the proof of the nonlinear, unconditional, stability of slowly rotating Kerr metrics. The main part of the proof, announced last year, was conditional on results concerning boundedness and decay estimates for nonlinear wave equations. I will review the old results and discuss how the conditional results can now be fully established.

Tue, 31 May 2022

12:00 - 13:15
Virtual

Implementing Bogoliubov transformations beyond the Shale-Stinespring condition

Sascha Lill
(University of Tuebingen and BCAM Bilbao)
Abstract

Quantum many–body systems can be mathematically described by vectors in a certain Hilbert space, the so–called Fock space, whose Schroedinger dynamics are generated by a self–adjoint Hamiltonian operator H. Bogoliubov transformations are a convenient way to manipulate H while keeping the physical predictions in- variant. They have found widespread use for analyzing the dynamics of quantum many–body systems and justifying simplified models that have been heuristically derived by physicists.

In the 1960s, Shale and Stinespring derived a necessary and sufficient condition for when a Bogoliubov transformation is implementable on Fock space, i.e. for when there exists a unitary operator U such that the manipulated Hamiltonian takes the form U*HU. However, non–implementable Bogoliubov transformations appear frequently in the literature for systems of infinite size.

In this talk, we therefore construct two extensions of the Fock space on which certain Bogoliubov transformations become implementable, although they violate the Shale–Stinespring condition.

Image of Catarina/speaker at conference

The eleventh annual two and a half day conference held alternately in Oxford and Cambridge, and focusing on partial differential equations and analysis, took place this year on 11-13th April in the Mathematical Institute in Oxford.

Fri, 20 May 2022

16:00 - 17:00
L5

Non-Invertible Symmetries from Discrete Gauging and Completeness of the Spectrum

Guillermo Arias-Tamargo
(Oviedo)
Abstract

We study global 1- and (d−2)-form symmetries for gauge theories based on disconnected gauge groups which include charge conjugation. For pure gauge theories, the 1-form symmetries are shown to be non-invertible. In addition, being the gauge groups disconnected, the theories automatically have a Z2
global (d−2)-form symmetry. We propose String Theory embeddings for gauge theories based on these groups. Remarkably, they all automatically come with twist vortices which break the (d−2)-form global symmetry. 

Subscribe to