Tue, 03 May 2022

15:30 - 16:30
Online

Fluctuations of the Characteristic Polynomial of Random Jacobi Matrices

Fanny Augeri
(Weizmann Institute of Science)
Abstract

The characteristic polynomial of a random Hermitian matrix induces naturally a field on the real line. In the case of the Gaussian Unitary ensemble (GUE), this fields is expected to have a very special correlation structure: the logarithm of this field is log-correlated and its maximum is at the heart of a conjecture from Fyodorov and Simm predicting its asymptotic behavior.   As a first step in this direction, we obtained in collaboration with R. Butez and O. Zeitouni, a central limit theorem for the logarithm of the characteristic polynomial of the Gaussian beta Ensembles and for a certain class of random Jacobi matrices. In this talk, I will explain how the tridiagonal representation of the GUE and orthogonal polynomials techniques allow us to analyse the fluctuations of the characteristic polynomial.

Tue, 26 Apr 2022

15:30 - 16:30
L6

Emergent random matrix behaviour in dual-unitary circuit dynamics

Pieter Claeys
(University of Cambridge)
Abstract

The dynamics of quantum many-body systems is intricately related to random matrix theory (RMT), to such a degree that quantum chaos is even defined through random matrix level statistics. However, exact results on this connection are typically precluded by the exponentially large Hilbert space. After a short introduction to the role of RMT in many-body dynamics, I will show how dual-unitary circuits present a minimal model of quantum chaos where this connection can be made rigorous. This will be illustrated using a new kind of emergent random matrix behaviour following a quantum quench: starting from a time-evolved state, an ensemble of pure states supported on a small subsystem can be generated by performing projective measurements on the remainder of the system, leading to a projected ensemble. In chaotic quantum systems it was conjectured that such projected ensembles become indistinguishable from the uniform Haar-random ensemble and lead to a quantum state design, which can be shown to hold exactly in dual-unitary circuit dynamics.

Tue, 24 May 2022

14:00 - 15:00
L5

Dirac index and associated cycles for Harish-Chandra modules

Salah Mehdi
(Université de Lorraine)
Abstract

Since their introduction in 1928 by Paul A. Dirac, Dirac operators have been playing essential roles in many areas of Physics and Mathematics. In particular, they provide powerful and efficient tools to clarify (and sometimes solve) important problems in representation theory of real Lie groups, p-adic groups or Hecke algebras, such as classification, unitarity and geometric realization. In this representation theoretic context, the Dirac index of a Harish-Chandra module is a virtual module induced by Vogan’s Dirac cohomology. Once we observe that Dirac index commutes with translation functors, we will associate a polynomial (on a Cartan subalgebra) with a coherent family of Harish-Chandra modules. Then we shall explain how this polynomial can be used to connect nilpotent orbits, associated cycles and the leading term of the Taylor expansion of the characters of Harish-Chandra modules. This is joint wok with P. Pandzic, D. Vogan and R. Zierau.
 

Tue, 07 Jun 2022

14:00 - 16:00
N3.12

Shock Reflection and free boundary problems

Professor Mikhail Feldman
(University of Wisconsin-Madison)
Further Information

Sessions will be as follows:

Tuesday 7th, 2:00pm-4:00pm

Wednesday 8th, 2:00pm-3:30pm

Abstract

We will discuss shock reflection phenomena, mathematical formulation of shock reflection problem, structures of  shock reflection configurations, and von Neumann conjectures on transition between regular and Mach reflections. Then we will describe the results on existence and properties of regular reflection solutions for potential flow equation. The approach is to reduce the shock reflection problem to a free boundary problem for a nonlinear  elliptic equation in self-similar coordinates, where the reflected shock is the free boundary, and ellipticity degenerates near a part of a fixed boundary. We will discuss the techniques and methods used in the study of such free boundary problems.

 

Wed, 08 Jun 2022

14:00 - 16:00
L3

Shock Reflection and free boundary problems

Professor Mikhail Feldman
(University of Wisconsin-Madison)
Further Information

Sessions will be as follows:

Tuesday 7th, 2:00pm-4:00pm

Wednesday 8th, 2:00pm-3:30pm

Abstract

We will discuss shock reflection phenomena, mathematical formulation of shock reflection problem, structures of  shock reflection configurations, and von Neumann conjectures on transition between regular and Mach reflections. Then we will describe the results on existence and properties of regular reflection solutions for potential flow equation. The approach is to reduce the shock reflection problem to a free boundary problem for a nonlinear  elliptic equation in self-similar coordinates, where the reflected shock is the free boundary, and ellipticity degenerates near a part of a fixed boundary. We will discuss the techniques and methods used in the study of such free boundary problems.

 

Mon, 27 Jun 2022

12:45 - 13:45
L3

Marginal quenches and drives in Tomonaga-Luttinger liquids/free boson CFTs

Apoorv Tivari
(Stockholm)
Abstract

I will discuss the free compact boson CFT thrown out of equilibrium by marginal deformations, modeled by quenching or periodically driving the compactification radius of the free boson between two different values. All the dynamics will be shown to be crucially dependent on the ratio of the compactification radii via the Zamolodchikov distance in the space of marginal deformations. I will present various exact analytic results for the Loschmidt echo and the time evolution of energy density for both the quench and the periodic drive. Finally, I will present a non-perturbative computation of the  Rényi divergence, an information-theoretic distance measure, between two marginally deformed thermal density matrices.

 

The talk will be based on the recent preprint: arXiv:2206.11287

Thu, 26 May 2022

17:00 - 18:00
Online

The Cauchy problem for the ternary interaction of impulsive gravitational waves

Maxime Van de Moortel
(Princeton University)
Further Information

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Abstract

In General Relativity, an impulsive gravitational wave is a localized and singular solution of the 

Einstein equations modeling the spacetime distortions created by a strongly gravitating source.
I will present a comprehensive theory allowing for ternary interactions of such impulsive gravitational waves in translation-symmetry, offering the first examples of such an interaction.  

The proof combines new techniques from harmonic analysis, Lorentzian geometry, and hyperbolic PDEs that are helpful to treat highly anisotropic low-regularity questions beyond the considered problem.  

This is joint work with Jonathan Luk.

Tue, 14 Jun 2022

14:30 - 15:00

TBA

TBA
Subscribe to