Thu, 04 Nov 2021

16:00 - 17:00
L3

Blow-up in the supercooled Stefan problem with noise: unstable states and discontinuity of the temperature

ANDREAS SOJMARK
(University of Oxford)
Abstract

Following on from Christoph's talk last week, I will present a version of the supercooled Stefan problem with noise. I will start by discussing the physical intuition and then give a probabilistic representation of solutions. From there, I will identify a simple relationship between the initial heat profile and a single parameter for how the liquid solidifies, which, if violated, forces the temperature to develop a discontinuity in finite time with positive probability. On the other hand, when the relationship is satisfied, the temperature remains globally continuous with probability one. The work is part of a new preprint that should soon be available on arXiv.

 

Tue, 02 Nov 2021
15:30
L5

Celestial holography, twisted holography, and twistors

Kevin Costello
(Perimeter Institute)
Abstract

I'll argue that the celestial holography program looks a lot like the twisted holography program when studied on twistor space.  The chiral algebras in celestial holography can be seen by applying techniques such as Koszul duality to holomorphic theories on twistor space. Along the way, I will discuss the role of one-loop gauge anomalies on twistor space and when they can be cancelled by a Green-Schwarz mechanism.   This is joint work in progress with Natalie Paquette.

The speaker will be on zoom, but for a more interactive experience, some of the audience will watch the seminar in L5.

 

Thu, 25 Nov 2021

16:00 - 17:00
L3

TBC

BEN HAMBLY
(University of Oxford)
Abstract

TBC

Thu, 11 Nov 2021

16:00 - 17:00
L3

Online Stochastic Optimization of SDEs

JUSTIN SIRIGNANO
(University of Oxford)
Abstract

We develop a new online algorithm for optimizing over the stationary distribution of stochastic differential equation (SDE) models. The algorithm optimizes over the parameters in the multi-dimensional SDE model in order to minimize the distance between the model's stationary distribution and the target statistics. We rigorously prove convergence for linear SDE models and present numerical results for nonlinear examples. The proof requires analysis of the fluctuations of the parameter evolution around the unbiased descent direction under the stationary distribution. Bounds on the fluctuations are challenging to obtain due to the online nature of the algorithm (e.g., the stationary distribution will continuously change as the parameters change). We prove bounds on a new class of Poisson partial differential equations, which are then used to analyze the parameter fluctuations in the algorithm. This presentation is based upon research with Ziheng Wang.
 

Thu, 28 Oct 2021

16:00 - 17:00
L3

Optimal bailout strategies and the drift controlled supercooled Stefan problem

CHRISTOPH REISINGER
(University of Oxford)
Abstract

We consider the problem faced by a central bank which bails out distressed financial institutions that pose systemic risk to the banking sector. In a structural default model with mutual obligations, the central agent seeks to inject a minimum amount of cash to a subset of the entities in order to limit defaults to a given proportion of entities. We prove that the value of the agent's control problem converges as the number of defaultable agents goes to infinity, and it satisfies  a drift controlled version of the supercooled Stefan problem. We compute optimal strategies in feedback form by solving numerically a forward-backward coupled system of PDEs. Our simulations show that the agent's optimal strategy is to subsidise banks whose asset values lie in a non-trivial time-dependent region. Finally, we study a linear-quadratic version of the model where instead of the losses, the agent optimises a terminal loss function of the asset values. In this case, we are able to give semi-analytic strategies, which we again illustrate numerically. Joint work with Christa Cuchiero and Stefan Rigger.

Thu, 21 Oct 2021

16:00 - 17:00
L3

Is volatility rough?

PURBA DAS
(University of Oxford)
Abstract

We introduce a method for estimating the roughness of a function based on a discrete sample, using the concept of normalized p-th variation along a sequence of partitions. We discuss the consistency of this estimator in a pathwise setting under high-frequency asymptotics. We investigate its finite sample performance for measuring the roughness of sample paths of stochastic processes using detailed numerical experiments based on sample paths of Fractional Brownian motion and other fractional processes.
We then apply this method to estimate the roughness of realized volatility signals based on high-frequency observations.
Through a detailed numerical experiment based on a stochastic volatility model, we show that even when instantaneous volatility has diffusive dynamics with the same roughness as Brownian motion, the realized volatility exhibits rougher behaviour corresponding to a Hurst exponent significantly smaller than 0.5. Similar behaviour is observed in financial data, which suggests that the origin of the roughness observed in realized volatility time-series lies in the `microstructure noise' rather than the volatility process itself.

 

 

 

Mon, 15 Nov 2021
14:15
L4

TBA

Huaxin (Henry) Liu
((Oxford University))
Abstract

TBA

Tue, 19 Oct 2021

12:30 - 13:00
C5

Control of bifurcation structures using shape optimization

Nicolas Boulle
(Mathematical Institute (University of Oxford))
Abstract

Many problems in engineering can be understood as controlling the bifurcation structure of a given device. For example, one may wish to delay the onset of instability, or bring forward a bifurcation to enable rapid switching between states. In this talk, we will describe a numerical technique for controlling the bifurcation diagram of a nonlinear partial differential equation by varying the shape of the domain. Our aim is to delay or advance a given branch point to a target parameter value. The algorithm consists of solving a shape optimization problem constrained by an augmented system of equations, called the Moore–Spence system, that characterize the location of the branch points. We will demonstrate the effectiveness of this technique on several numerical experiments on the Allen–Cahn, Navier–Stokes, and hyperelasticity equations.

Subscribe to