Thu, 18 Jun 2020

16:00 - 16:45
Virtual

Non-local games: operator algebraic approaches

Ivan Todorov
(Queen's University Belfast)
Further Information

Part of UK virtual operator algebra seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

The study of non-local games has involved fruitful interactions between operator algebra theory and quantum physics, with a starting point the link between the Connes Embedding Problem and the Tsirelson Problem, uncovered by Junge et al (2011) and Ozawa (2013). Particular instances of non-local games, such as binary constraint system games and synchronous games, have played an important role in the pursuit of the resolution of these problems. In this talk, I will summarise part of the operator algebraic toolkit that has proved useful in the study of non-local games and of their perfect strategies, highlighting the role C*-algebras and operator systems play in their mathematical understanding.

Mon, 08 Jun 2020
15:45
Virtual

The rates of growth in a hyperbolic group

Zlil Sela
(Hebrew University of Jerusalem)
Abstract

We study the countable set of rates of growth of a hyperbolic 
group with respect to all its finite generating sets. We prove that the 
set is well-ordered, and that every real number can be the rate of growth 
of at most finitely many generating sets up to automorphism of the group.

We prove that the ordinal of the set of rates of growth is at least $ω^ω$, 
and in case the group is a limit group (e.g., free and surface groups), it 
is $ω^ω$.

We further study the rates of growth of all the finitely generated 
subgroups of a hyperbolic group with respect to all their finite 
generating sets. This set is proved to be well-ordered as well, and every 
real number can be the rate of growth of at most finitely many isomorphism 
classes of finite generating sets of subgroups of a given hyperbolic 
group. Finally, we strengthen our results to include rates of growth of 
all the finite generating sets of all the subsemigroups of a hyperbolic 
group.

Joint work with Koji Fujiwara.

Mon, 22 Jun 2020
15:45
Virtual

Weil-Petersson geodesics and geometry of 3-manifolds

Yair Minsky
(Yale University)
Abstract

There is a well-known correspondence between Weil-Petersson geodesic loops in the moduli space of a surface S and hyperbolic 3-manifolds fibering over the circle with fibre S. Much is unknown, however, about the detailed relationship between geometric features of the loops and those of the 3-manifolds.

In work with Leininger-Souto-Taylor we study the relation between WP length and 3-manifold volume, when the length (suitably normalized) is bounded and the fiber topology is unbounded. We obtain a WP analogue of a theorem proved by Farb-Leininger-Margalit for the Teichmuller metric. In work with Modami, we fix the fiber topology and study connections between the thick-thin decomposition of a geodesic loop and that of the corresponding 3-manifold. While these decompositions are often in direct correspondence, we exhibit examples where the correspondence breaks down. This leaves the full conjectural picture somewhat mysterious, and raises many questions. 

Thu, 04 Jun 2020

16:00 - 17:00

Multi-agent reinforcement learning: a mean-field perspective

Renyuan Xu
(University of Oxford)
Abstract

Multi-agent reinforcement learning (MARL) has enjoyed substantial successes in many applications including the game of Go, online Ad bidding systems, realtime resource allocation, and autonomous driving. Despite the empirical success of MARL, general theories behind MARL algorithms are less developed due to the intractability of interactions, complex information structure, and the curse of dimensionality. Instead of directly analyzing the multi-agent games, mean-field theory provides a powerful approach to approximate the games under various notions of equilibria. Moreover, the analytical feasible framework of mean-field theory leads to learning algorithms with theoretical guarantees. In this talk, we will demonstrate how mean-field theory can contribute to the simultaneous-learning-and-decision-making problems with unknown rewards and dynamics. 

To approximate Nash equilibrium, we first formulate a generalized mean-field game (MFG) and establish the existence and uniqueness of the MFG solution. Next we show the lack of stability in naive combination of the Q-learning algorithm and the three-step fixed-point approach in classical MFGs. We then propose both value-based and policy-based algorithms with smoothing and stabilizing techniques, and establish their convergence and complexity results. The numerical performance shows superior computational efficiency. This is based on joint work with Xin Guo (UC Berkeley), Anran Hu (UC Berkeley), and Junzi Zhang (Stanford).

If time allows, we will also discuss learning algorithms for multi-agent collaborative games using mean-field control. The key idea is to establish the time consistent property, i.e., the dynamic programming principle (DPP) on the lifted probability measure space. We then propose a kernel-based Q-learning algorithm. The convergence and complexity results are carried out accordingly. This is based on joint work with Haotian Gu, Xin Guo, and Xiaoli Wei (UC Berkeley).

Mon, 08 Jun 2020

16:00 - 17:00
Virtual

Kinetic transport in the Lorentz gas: classical and quantum

Jens Marklof
(Bristol University)
Abstract

In the first part of this lecture, I will discuss the proof of convergence of the Lorentz process, in the Boltzmann-Grad limit, to a random process governed by a generalised linear Boltzmann equation. This will hold for general scatterer configurations, including certain types of quasicrystals, and include the previously known cases of periodic and Poisson random scatterer configurations. The second part of the lecture will focus on quantum transport in the periodic Lorentz gas in a combined short-wavelength/Boltzmann-Grad limit, and I will report on some partial progress in this challenging problem. Based on joint work with Andreas Strombergsson (part I) and Jory Griffin (part II).

Wed, 03 Jun 2020
10:00
Virtual

An Introduction to Fusion Categories

Thibault Decoppet
(Oxford University)
Abstract

Motivation for the study of fusion categories is twofold: Fusion categories arise in wide array of mathematical subjects, and provide the necessary input for some fascinating topological constructions. We will carefully define what fusion categories are, and give representation theoretic examples. Then, we will explain how fusion categories are inherently finite combinatorial objects. We proceed to construct an example that does not come from group theory. Time permitting, we will go some way towards introducing so-called modular tensor categories.

 

Fri, 05 Jun 2020

15:00 - 16:00
Virtual

A topological approach to synchronization leads to explosive transition

Ginestra Bianconi
(QMUL)
Abstract

Synchronization is a collective phenomenon that pervades the natural systems from neurons to fireflies. In a network, synchronization of the dynamical variables associated to the nodes occurs when nodes are coupled to their neighbours as captured by the Kuramoto model. However many complex systems include also higher-order interactions among more than two nodes and sustain dynamical signals that might be related to higher-order simplices such as nodes of triangles. These dynamical topological signals include for instance fluxes which are dynamical variables associated to links.

In this talk I present a new topological approach [1] to synchronization on simplicial complexes. Here the theory of synchronization is combined with topology (specifically Hodge theory) for formulating the higher-order Kuramoto model that uses the higher-order Laplacians and provides the main synchronization route for topological signals. I will show that the dynamics defined on links can be projected to a dynamics defined on nodes and triangles that undergo a synchronization transition and I will discuss how this procedure can be immediately generalized for topological signals of higher dimension. Interestingly I will show that when the model includes an adaptive coupling of the two projected dynamics, the transition becomes explosive, i.e. synchronization emerges abruptly.

This model can be applied to study synchronization of topological signals in the brain and in biological transport networks as it proposes a new set of topological transformations that can reveal collective synchronization phenomena that could go unnoticed otherwise.

[1] Millán, A.P., Torres, J.J. and Bianconi, G., 2019. Explosive higher-order Kuramoto dynamics on simplicial complexes. Physical Review Letters (in press) arXiv preprint arXiv:1912.04405.

Subscribe to