Interested in Quantum PhD?

Our Quantum Information Science and Technologies CDT Open Days are scheduled In Bristol 17 January 2025 and Sussex 24 January 2025.  

They will include talks from Quantum Scientists and Engineers and the opportunity to put your questions to current CDT students. Register through our website here

Andrew Wiles Building

Fridays@2 is back for Hilary Term, taking place as usual every Friday from 2:00-3:00pm in L1, followed by tea, coffee and snacks in the foyer.

Goose on ice

It's the week 0 student bulletin!

We hope that you enjoyed your winter holidays, and that you're back in Oxford feeling refreshed and ready to take on Hilary.  We have plenty of activities in the Bulletin this week. Career and graduate study opportunities, Oxford Nightline training, and more!

Thu, 20 Feb 2025
16:00
L5

E-Gamma Divergence: Its Properties and Applications in Differential Privacy and Mixing Times

Behnoosh Zamanlooy
(McMaster University)
Further Information

Please join us outside the lecture room from 15:30 for refreshments.

Abstract

We investigate the strong data processing inequalities of contractive Markov Kernels under a specific f-divergence, namely the E-gamma-divergence. More specifically, we characterize an upper bound on the E-gamma-divergence between PK and QK, the output distributions of contractive Markov kernel K, in terms of the E-gamma-divergence between the corresponding input distributions P and Q. Interestingly, the tightest such upper bound turns out to have a non-multiplicative form. We apply our results to derive new bounds for the local differential privacy guarantees offered by the sequential application of a privacy mechanism to data and we demonstrate that our framework unifies the analysis of mixing times for contractive Markov kernels.

Thu, 30 Jan 2025
16:00
L5

Market Making with fads, informed and uninformed traders.

Adrien Mathieu
(Mathematical Institute)
Abstract

We characterise the solutions to a continuous-time optimal liquidity provision problem in a market populated by informed and uninformed traders. In our model, the asset price exhibits fads -- these are short-term deviations from the fundamental value of the asset. Conditional on the value of the fad, we model how informed traders and uninformed traders arrive in the market. The market maker knows of the two groups of traders but only observes the anonymous order arrivals. We study both, the complete information and the partial information versions of the control problem faced by the market maker. In such frameworks, we characterise the value of information, and we find the price of liquidity as a function of the proportion of informed traders in the market. Lastly, for the partial information setup, we explore how to go beyond the Kalman-Bucy filter to extract information about the fad from the market arrivals.

Wed, 29 Jan 2025
11:00
L4

Singularity of solutions to singular SPDEs.

Hirotatsu Nagoji
(Kyoto University)
Abstract

In this talk, we discuss the condition for the marginal distribution of the solution to singular SPDEs on the d-dimensional torus to be singular with respect to the law of the Gaussian measure induced by the linearized equation. As applications of our result, we see the singularity of the Phi^4_3-measure with respect to the Gaussian free field measure and the border of parameters for the fractional Phi^4-measure to be singular with respect to the base Gaussian measure. This talk is based on a joint work with Martin Hairer and Seiichiro Kusuoka.

Wed, 22 Jan 2025
11:00
L6

Adapted Wasserstein distance between continuous Gaussian processes

Yifan Jiang
(Mathematical Institute)
Abstract
Adapted Wasserstein distance is a generalization of the classical Wasserstein distance for stochastic processes. It captures not only the spatial information but also the temporal information induced by the processes. In this talk, I will focus on the adapted Wasserstein distance between continuous Gaussian processes. An explicit formula in terms of their canonical representations will be given. These results cover rough processes such as fractional Brownian motions and fractional Ornstein--Uhlenbeck processes. If time permits, I will also show that the optimal coupling between two 1D additive fractional SDE is driven by the synchronous coupling of the noise.
We introduce a 'causal factorization' as an infinite dimensional Cholesky decomposition on Hilbert spaces. This naturally bridges the probabilistic notion 'causal transport' and the algebraic object 'nest algebra'.  Such a factorization is closely related to the (non)canonical representation of Gaussian processes which is of independent interest. This talk is based on a work-in-progress with Fang Rui Lim.

The Biochemistry department are recruiting some new Class Tutors for Hilary term to teach 4 statistics classes as part of the undergraduate Quantitative Biochemistry Course.

Garbage in Garbage out: Impacts of data quality on criminal network intervention
Yeung, W Di Clemente, R Lambiotte, R (02 Jan 2025)
Subscribe to