Mon, 03 Mar 2025
15:30
L5

The Gauss-Manin connection in noncommutative geometry

Ezra Getzler
(Northwestern University and Uppsala University)
Abstract

The noncommutative Gauss-Manin connection is a flat connection on the periodic cyclic homology of a family of dg algebras (or more generally, A-infinity categories), introduced by the speaker in 1991.

The problem now arises of lifting this connection to the complex of periodic cyclic chains. Such a lift was provided in 2007 by Tsygan, though without an explicit formula. In this talk, I will explain how this problem is simplified by considering a new A-infinity structure on the de Rham complex of a derived scheme, which we call the Fedosov product; in joint work with Jones in 1990, the speaker showed that this product plays a role in a multiplicative version of the Hochschild-Kostant-Rosenberg theorem, and the point of the present talk is that it seems to be the correct product on the de Rham complex for derived geometry.

Let be an open subset of a derived affine space parametrizing a family of -algebras . We will construct a chain level lift of the Gauss-Manin connection that satisfies a new equation that we call the Fedosov equation: .

Mon, 24 Feb 2025
15:30
L5

Small eigenvalues of hyperbolic surfaces

William Hide
((Oxford University))
Abstract

We study the spectrum of the Laplacian on finite-area hyperbolic surfaces of large volume, focusing on small eigenvalues i.e. those below 1/4. I will discuss some recent results and open problems in this area. Based on joint works with Michael Magee and with Joe Thomas.
 

Mon, 17 Feb 2025
15:30
L5

Koszul duality and Calabi Yau strutures

Julian Holstein
(Universität Hamburg)
Abstract
I will talk about two aspects of Koszul duality. Firstly, Koszul duality for dg categories provides a way of modelling dg categories as certain curved coalgebras. This is a linearization of the correspondence of simplicial categories as simplicial sets (quasi-categories). Secondly, Koszul duality exchanges smooth and proper Calabi-Yau structures for dg categories and curved coalgebras. This is a generalization and conceptual explanation of the following phenomen: For a topological space X with the homotopy type of a finite complex having an oriented Poincaré duality structure (with local coefficients) is equivalent to a smooth Calabi-Yau structure on the dg algebra of chains on the based loop space of X.  This is joint work with Andrey Lazarev and with Manuel Rivera, respectively.
Mon, 10 Feb 2025
15:30
L5

Invariants that are covering spaces and their Hopf algebras

Ehud Meir
(The University of Aberdeen)
Abstract
Different flavours of string diagrams arise naturally in studying algebraic structures (e.g. algebras, Hopf algebras, Frobenius algebras) in monoidal categories. In particular, closed diagrams can be realized as scalar invariants. For a structure of a given type the closed diagrams form a commutative algebra that has a richer structure of a self dual Hopf algebra. This is very similar, but not quite the same, as the positive self adjoint Hopf (or PSH) algebras that were introduced by Zelevinsky in studying families of representations of finite groups. In this talk I will show that the algebras of invariants admit a lattice that is a PSH-algebra. This will be done by considering maps between invariants, and realizing them as covering spaces. I will then show some applications to subgroup growth questions, and a formula that relates the Kronecker coefficients to finite index subgroups of free groups. If time permits, I will also explain some connections with 2 dimensional TQFTs.

 
 
Mon, 03 Feb 2025
15:30
L5

Relative Thom conjectures

Matthew Hedden
(Michigan State University)
Abstract

Gauge theory excels at solving minimal genus problems for 3- and 4-manifolds.  A notable triumph is its resolution of the Thom conjecture, asserting that the genus of a smooth complex curve in the complex projective plane is no larger than any smooth submanifold homologous to it.  Gauge theoretic techniques have also been used to verify analagous conjectures for Kähler surfaces or, more generally, symplectic 4-manifolds.  One can formulate versions of these conjectures for surfaces with boundary lying in a 3-manifold, and I'll discuss work in progress with Katherine Raoux which attempts to extend these "relative" Thom conjectures outside the complex (or even symplectic) realm using tools from Floer homology.

Mon, 27 Jan 2025
15:30
L5

(cancelled)

(Oxford University)
Mon, 20 Jan 2025
15:30
L5

The Farrell--Jones Conjecture and automorphisms of relatively hyperbolic groups

Naomi Andrew
(Oxford University)
Abstract

The Farrell--Jones conjecture predicts that the algebraic K-theory of a group ring is isomorphic to a certain equivariant homology theory, and there are also versions for L-theory and Waldhausen's A-theory. In principle, this provides a way to calculate these K-groups, and has many applications. These include classifying manifolds admitting a given fundamental group and a positive resolution of the Borel conjecture.

I will discuss work with Yassine Guerch and Sam Hughes on the Farrell--Jones conjecture for extensions of relatively hyperbolic groups, as well as an application to their automorphism groups in the one-ended case. The methods are from geometric group theory: we go via the theory of JSJ decompositions to produce acylindrical actions on trees.

Snakes on a Plane: mobile, low dimensional logical qubits on a 2D surface
Siegel, A Cai, Z Jnane, H Koczor, B Pexton, S Strikis, A Benjamin, S (03 Jan 2025)
Thu, 05 Jun 2025
14:00
Lecture Room 3

Solving sparse linear systems using quantum computing algorithms

Leigh Lapworth
(Rolls-Royce)
Abstract

The currently available quantum computers fall into the NISQ (Noisy Intermediate Scale Quantum) regime. These enable variational algorithms with a relatively small number of free parameters. We are now entering the FTQC (Fault Tolerant Quantum Computer)  regime where gate fidelities are high enough that error-correction schemes are effective. The UK Quantum Missions include the target for a FTQC device that can perform a million operations by 2028, and a trillion operations by 2035.

 

This talk will present the outcomes from assessments of  two quantum linear equation solvers for FTQCs– the Harrow–Hassidim–Lloyd (HHL) and the Quantum Singular Value Transform (QSVT) algorithms. These have used sample matrices from a Computational Fluid Dynamics (CFD) testcase. The quantum solvers have also been embedded with an outer non-linear solver to judge their impact on convergence. The analysis uses circuit emulation and is used to judge the FTQC requirements to deliver quantum utility.

Subscribe to